DMUTE HEX GUIDE

This is a reference guide for constructing advanced dungeons for Dungeon Master, using DMute created by George Gilbert. This is for v1.3, which has some omissions in the graphical user interface. However, there is a simple hex editor facility for each individual object, so that almost all aspects can be altered for complex puzzles and arrangements to overcome this. Additional text modification and initial character stats changing can be done with Textmute, created by Benjamin Prieu.

This guide has been compiled almost entirely from postings on the DM Web DMute forum. This forum is a good place for trap ideas, new tricks, DMuted dungeons and to post on for additional clarifications

Anything written in italics is an unconfirmed fact/rumour from me, with the language showing how reliable the information is. Another language quirk is that I’ll call anything that can be edited in the game except for tiles an object (monster, wall object, pressure pad, potion etc), and anything that the character can carry in their inventory an item. I count the Hall of Champions as level 1.

This is a rough draft, so the language is still very wordy and the sections in no real order. If there are any omissions, mistakes and especially anything that is wholly unintelligible, please e-mail me at beowuuf@yahoo.com
Quickstart guide
The instructions with DMute, and the GUI, should allow most aspects of a basic dungeon to be created. Research after v1.3 has found new things, for example a complete list of objects that can be used to activate a wall object. In order to use these, you need to hex edit (change the actual data). To recap: for a tile, press ‘z’ when the mouse is over it. For an object on the tile, either press h then the object number, or press e, select the object from the list in the GUI, then select the hex edit option.

An 8 byte number (see Appendix 1 for a quick guide to hex if needed) is then displayed, though each object doesn’t necessarily use all the bytes. For tiles, only the 3rd (type), 7th and 8th bytes (related to objects) are used. For objects, the 2nd byte is always the object identifier number. For example, potions use 20, wall objects/pads/alcoves/generators use C, D, or E. The 1st byte is the unique identifier in that type, and so no two objects should have the same first two bytes. The rest of the numbers aren’t necessarily used, and have various meanings depending on the object type.

The pressure pad/wall object is the most common object, and the one that will need to be hex edited most, so here is a quick guide to it’s layout:

3rd byte – activation type. This number is used to show how the object activates, for example 4/84 is used to show the object is activated by an item (that is then removed from the hand).

4th byte – additional quantifier. This is used if extra information is needed for the above. For example with 3rd byte 4/84, what item is needed is given by the 4th byte.

5th byte – effect generated. This byte shows what effect, if any, is generated when the object is activated. For example 80 will generate an ‘open/activate’ effect.

6th byte – graphics/timing. The first number shows the graphics number of the wall object/pad (0 for and invisible pad). The second number, if between 0 – 7 shows the delay before the effect is generated. If the number is 8, then the object is ‘inactive’, meaning it won’t generate an effect (it can still be activated, which is useful for things like torch holders).

7th and 8th byte – co-ordinates. If the object is active, then these two numbers give the coded co-ordinates of the target of the effect. If the object is inactive, then these numbers are usually ignored except in rare occasions.

Knowing this layout then most puzzles can be attempted (see additional codes in the pressure pads and tile sections, and you can always look at the original dungeon.dat). Three points to note:

1) Open/activate, close/deactivate, and toggle2 options in the GUI for effects are the best to use.

2) Adding 4 to the 5th byte will cause the effect to only be generated once.

3) DMute can only assign the timing 0 – 6, you need to hex edit to get a delay of 7.

To get started, here is how to construct the torch holder, and a toggling graphic button/lever (alternatively a full tutorial with screenshots and tips is available for a full puzzle in Appendix III).

Torch holder.

Create two wall objects.

For the first, keep the activation as none, make it inactive (so effect generated isn’t important) and make the graphic the non-displayed one (for a starting full holder, use the empty holder graphic, etc).

For the second (the important one) also change it to ‘inactive’. But now hex editing will be needed. For the third byte, change the byte to D. This is the activation type that corresponds exactly to the torch holder behaviour – using the item on it will place this item into the wall, pressing it with an empty hand when the item is in the wall removes the object again, both causing an activation. The 4th byte needs to be 2 to set the activation item to be a torch.

Finally, the 7th byte needs to be changed to 10 – this is an exception that allows an inactive object to toggle places with another in the wall (so that the other first graphic will now be displayed) when activated.

If the start condition is to be a full torch holder, then a torch will also need to be placed into the wall tile, with the same facing as the wall objects.

Lever:

Create two wall objects.

For the first, change it to an inactive object, activated by mouse, with the hidden graphic (button in, lever down, etc). Now hex edit this object so the 7th byte is 10. This creates the toggling part of the switch – each time the wall is pressed the graphics will swap round. Check that DMute hasn’t changed the 3rd byte to 0 – activation by mouse should have a 1 there.

For the second object, also have activation by mouse, active this time, using the initially displayed graphic, and then set the effect (destination, etc. - toggle 2 is best for these situations).

In order to create a once only activated lever/button, then adding 4 to the 5th byte of the second object only will allow the graphic to still toggle, while adding 4 to both 5th bytes will stop any effect from generating after the initial press.

Read the relevant sections for other common needs, like ‘chesting’ (putting objects into creatures or chests) and ‘DM and DMute problems’ for common errors that can occur.

Main guide

Floor Tile Hex

Doors

Teleporters

Text

Chesting

Items

Weapons

Potions

Clothes

Miscellaneous objects

Chests

Pressure pads and wall objects

Object hex breakdown

Item activation list

Champion mirrors

Shooter

Monster generators

Complex puzzles

End game pad

Monsters

Monster hex

Replacing monster types

Monster colours

Invisible creatures

Cloning

DM and DMute problems

Appendix I - Binary and hex
Appendix II – DM level stats

Appendix III – DMute tutorial

Floor Tile Hex

Floor tiles have their own hex. Most bytes are not used, and set to 0. The only bytes used are the 3rd, for tile type, and the 7th and 8th. These last two indicate the unique identifiers (bytes 1 and 2) of the first object in the linked object list (objects on the same tile are remembered together in an ordered list as shown in DMute). The presence of an object adds 10 to the tile type (doors and teleports are objects and tiles, so have a default +10 to the tile hex). If no object is present, then these bytes are FE and FF respectively. The list of types, 3rd bytes and functions are as follows, with a bracketed attribute/number showing a toggle condition (i.e. if this square is targeted with an activate/deactivate/toggle effect):

 Type

Hex

Attributes

Wall

0

Blank wall tile.

1–F
Wall with random chance of wall object graphic, so far 8 has given north facing, 6 east-facing, and 4 east-facing graphics occasionally

Floor

20

Blank floor tile

21–2F
Floor with random chance of graphic. 28 has lead to random graphic, but all of DM level 4 has this as a floor setting, etc

Pit

40,42

Closed pit (48, 4A)

41,43

Imaginary pit, closed (49, 4B)

44,46

Invisible pit, closed (4C, 4E)

45,47

Imaginary invisible pit, closed (4D, 4F)

48,4A

Open pit (40, 42)

49,4B

Imaginary pit, open (41, 43)

4C,4E

Invisible pit, open (44, 46)

4D,4F

Imaginary invisible pit, open (45, 47)

Most pits are displayed as ? by DMute, except for the first number of closed, open, and invisible (both types) pits. Pits without a valid dungeon tile below them will still inflict damage, but if any character dies on them it will cause a game crash.

Stairwell
60-63

West-east facing, leading down

64-67 North-south facing, leading down

68-6B

West-east facing, leading up

69-6F

North-south facing, leading up

All versions of each stairwell appear identical. Objects placed on stairs during the game will be moved to the next tile along, BUT objects placed on the stairs using DMute remain, as do spells cast there, so 70-7F are valid.

Door

80-8F

Invalid, as doors are objects aswell. Hex editing this will

give the corresponding state for a plain iron (glitched graphic) door with an inactive switch. Placing an object on this tile will alter the appearance/function of the glitched door as long as that object is there. The topmost object in a pile decides function. These doors can also be toggled as normal, though all in between states (81-83, 89-8B) change instantly to the open versions on game start. These non-doors still count towards the door limit.

90 West-east facing open door (94)

91 ¾ open door – stays open until used (90)

92 ½ open door – stays open until used, blocks doorway (90)

93 ¼ open door – stays open until used, blocks doorway (90)

94 West-east facing closed door (90)

95 West-east facing bashed door

96 Left ½ of door - for vertically opening doors too (95)

97 Right ½ , ½ open – for vertically opening doors too (95)

98-9F

North-south facing versions of above doors

Teleporter
A0-AF

Gives the appearance of the corresponding teleporter, with

the same toggle-able function, but crashes when any item/creature (not party) enters the tile.

B0-B3

Invisible teleporter, closed (B8-BB)

B4-B7

Blue haze, closed (BC-BF)

B8-BB

Invisible teleporter, open (B0-B3)

BC-BF

Blue haze, open (B4-B7)

All versions of each teleporter appear identical in function. Only the first tile type is displayed by DMute, all other versions are represented by ?s. The teleporter floor object in DMute is a B0 teleporter, except the number 30 is accidentally assigned to it. This must be changed for the teleporter to act as normal.

Trick walls
C0,C2,C8,CA
False wall, closed (C4, C6, CC, CE)

C1,C3,C9,CB
Imaginary wall, closed (C5, C7, CD, CF)

C4,C6,CC,CE
False wall, open (C0, C2, C8, CA)

C5,C7,CD,CF
Imaginary wall, open (C1,C3,C9,CB)

There doesn’t appear to be a difference between the versions, except that perhaps the C9 invisible wall might appear to be a solid wall to monsters until walked through by party.
Invalid

E0-EF

Only available through hex editing. Behaves like a floor

 tile, except that any object placed on it remains invisible outside of the tile. Represented by DMute as ?

F0-FF
Only available through placing an object on a tile E0-EF in a DM saved game. This state does not affect the saved game, but if attempted or even viewed through DMute, it causes DMute to created the ‘shuffling crash’ effect.

Doors and stairs appear invisible from the side. Doors still block if closed, and stairs still work no matter which direction entered from.

Invisible walls are not possible, but can be simulated with varying degrees of success. One way is to have a teleporter moving everything back one square. Another is to use invisible creatures (see section in monsters).

Door and pit tiles will not let any object on them be edited by the GUI. To get around this, hex edit the tile to 30 instead. The objects on the tile can therefore be edited as normal. Once finished, restore the original 3rd byte to its original value.

Doors

Doors are objects and floor tiles combined, the former indicating function and appearance, the latter indicating state and direction. The object part (ident. 0) uses four bytes, with the following properties:

Appearance: Governed by the 3rd byte. The basic door (0) is a plain iron door. Adding 2, 4, or 6 gives the ornate 1, 2 and 3 graphics. Adding 1 to this gives the corresponding wooden door instead. All higher numbers (8 –f) give glitched graphics, which won’t affect the door otherwise, though can result in other game glitches.

Function:
Also indicated in the 3rd byte. The plain door opens horizontally and has no button. Adding 20 indicates vertical opening, and adding 40 indicates the push button. Other (odd) numbers such as 10, 30, etc give glitched graphics but operate as the lower equivalent door.

Sensitivity:
Adding 80 to the 3rd byte will indicate the door can be destroyed by fireball. Iron doors require at least MON fireballs from master level wizards. Wooden doors only require low level UM fireballs. There is a chance of a fireball not destroying a door, so it could be down to damage from a hit through fireball.

Having an odd number in the 4th byte (bit 0 set at 1) indicates that the door is ‘bashable’ (destroyable by chopping). This only works on wooden doors, and only characters of strength 39 or more can bash doors. Otherwise adjusting the fourth byte seems to affect fireball sensitivity, slightly (varying it up to EE level fireballs) with no obvious correllation

‘RA’ doors (plain wooden or iron doors on DM levels 7 and 13) are not susceptible to anything. In general ornate graphics have the same susceptibility as the plain door equivalent.

Teleporters

Teleporters are objects and floor tiles combined, the former indicating function, the latter state and appearance. The tile hex is covered in the tile section, for the object part (ident. 4) six bytes are used, and the hex comes together as follows:

Co-ordinates:
Byte 3, 4 and 6 indicate the destination co-ordinates of the teleporter. The 6th byte is the level byte, with 0 to D indicating destinations from the Hall of champions to the Dragon level.

For byte 3 and 4, convert the relative (not global DMute) co-ordinates of the level to binary. The top left corner is 0,0, and with the maximum level size as 32x32, a 5 bit binary number can be formed, so the co-ordinated can be written in the form (x4 – x0, y4 – y0). The bit value of the 3rd byte = y2 y1 y0 x4 x3 x2 x1 x0, and of the 4th byte = X X X X X X y4 y3, where X is governed by other functions, but X = 0 giving the default setting.

All functions are governed by the 4th byte

Scope:
The scope of what is teleported is given by:

Object = 0x (default)

Monster = 2x

Party/Object = 4x

Everything = 6x

Where x is the co-ordinate part

Rotation:
Rotation is normally relative (from the position entered). Adding 10 will produce an absolute (from north) rotation effect instead. For the rotations, add 0 for none/north, 4 for clockwise/east, 8 for anti-clockwise/west, and C for 180(/south

Sound:
Teleporters are silent by default. In order to produce the buzz on teleporting, then add 80

The 5th byte is 0, and has an unknown function.
DMute uses the codes 0x, 2x, 4x and Ex for the scope of teleporters so all but one will be silent. The ‘buzz?’ check box in the GUI actually adds 10 to the 4th byte, so it actually switches between relative and absolute spins.

Text

Used for wall texts, “speaking” pads (text is displayed in the bottom text area) and scrolls. Wall texts and speaking pads are identical (object ident. 8) except for positioning (follows normal wall object/floor pad rules for positioning code), and only use 4 bytes. The third and fourth bytes reference the text code below directly. Reducing the 3rd byte by 1 makes the text invisible/silent, and this state can be toggled back and forth by means of an open/close or toggle effect to the tile. For wall texts, this effect must be targeted to the correct wall face.

Scrolls (object ident. 1C, and are unique items themselves) reference a text object instead, like a ‘chested’ object in monsters and chests (see section on ‘Chesting’). The third byte is the unique identifier of a text object, and the fourth indicates the state of the scroll. 0 used for open scrolls, usually in the characters hands – a hex change to this will reset when the object is placed in a characters hands. 4 is the normal (closed) state. Scrolls ignore the visible/invisible state of the text referenced. DMute does not update the scroll contents displayed well if you decide to reference a new text, so it is always best to physically check scrolls through DM to make sure it says what you think it should.

Characters’ names are needed as (preferably silent) pads in front of champion mirrors or else the game will crash when the mirror is selected. These texts also have the characters stats at the end (represented by garbage text) so they do not make good visible/audible texts.

	D9 10
	Welcome back brave adventurers

	A9 2
	Hall of champions

	D9 32
	It is too bad you did not learn the secret of the firestaff…

	99 5
	Iaido Ruyito Chiburi

	51 6
	Zed Duke of Banville

	81 3
	Elija Lion of Yaitopya

	61 B
	Chani Sayyadina Sihaya

	91 D
	Hawk the Fearless

	21 C
	Boris Wizard of Baldor

	41 E
	Alex Ander

	39 2B
	Nabi the Healer

	49 28
	Hissssa Lizar of Makan

	9 29
	Gothmog

	E1 C
	Sonja She Devil

	1 A
	Leyla Shadowseeker

	61 9
	Wuuf the Bika

	B1 A
	Mophus the Healer

	19 8
	Stamm Bladecaster

	1 2
	Azizi Johari

	1 0
	Daroou

	49 1
	Wu Tse Son of Heaven

	F9 4
	Tiggy Tamal

	99 0
	Halk the Barbarian

	41 4
	Syra Child of Nature

	9 7
	Gando Thurfoot

	C9 8
	Linflas

	61 30
	VI altar of rebirth

	19 10
	Step inside and take a ride

	D9 F
	This wall says nothing

	D9 2
	Leif the Valiant

	71 10
	To close the pit leave a valuable on the floor

	B9 31
	The only way out is another way in

	A1 11
	This fountain accepts one wish

	E9 7
	None shall pass

	41 13
	Choose your door choose your fate

	19 26
	Chambers of the guardian

	21 20
	The vault

	79 14
	The matrix

	81 16
	Time is of the essence

	29 1E
	Room of the gem

	1 1C
	Creature cavern

	E9 14
	You must pay for your entrance

	39 15
	Cast your influence cast your might

	21 17
	Hit and run

	39 22
	Step right up going down

	41 17
	VI altar of rebirth

	61 18
	Prepare to meet your doom

	59 10
	Don’t let a closed door stop you

	91 31
	Shortcut back

	99 1A
	This is my prisoner let him suffer

	99 1B
	You will regret that

	D1 1B
	Treasure stores

	59 1E
	Store rooms

	79 1E
	The riddle rooms

	61 1F
	I am all I am none

	99 1F
	A golden head and tail but no body

	21 1F
	I arch yet I have no back

	A1 1E
	Hard as rock blue as sky twinkle in a womans eye

	69 21
	The grave of king Milias the Golden who even

	A9 20
	The grave of king Filius explorer of combinations

	19 21
	in death thirsts for bullion

	79 24
	I don’t like to be ignored

	21 33
	If you want to stay alive you better turn and run

	51 24
	I hate cowards

	B1 7
	Test your strength

	89 22
	Ha ha ha

	B9 32
	Altar of VI

	C1 24
	Tomb of the Firestaff

	1 19
	Danger enter with caution

	49 19
	Clean flasks

	1 25
	Sundry supplies

	71 19
	Notes spells and formulae

	19 32
	Fire elements

	91 32
	Water elements

	69 32
	Air elements

	41 32
	Earth elements

	31 35
	Reading room

	99 15
	Only the touch of the proper spell…

	F9 2C
	When is rock not rock

	41 2E
	What is underfoot is soon underhead

	B1 2F
	Lighter than a feather

	99 30
	Beware my twisted humour the deceiver the snake

	F9 1F
	Choose a door

	79 31
	Zoooom

	31 11
	Turn back

	29 28
	Clockwise

	B1 35
	Enlarge my view

	E1 35
	Cowards will be hunted down and killed

	11 34
	DYour names will be recorded in the Great Hall and remembered by the future generations you have made possible.

	51 27
	CBy your brave deeds I am made whole again and harmony is restored to the world

	A1 2E
	BOnly the learning the truth and seeking the path of balance did you guess the true nature of the firestaff

	39 2D
	AThank you for my friends. You have banished Chaos and rejected the false path of uncompromising order.

	71 35
	New lives for old bones

	51 11
	Invoke FUL for a magic torch

	11 31
	Small details hide great rewards

	F9 11
	Casting VI BRO into a flask creates a serum for curing poison

	A1 12
	Casting VI into a flask creates a serum that heals wounds

	49 F
	Drink these to gain magical defences

	A1 13
	DES VEN will conjure a poison spell

	F1 2F
	The spell DES EW weakens nonmaterial beings

	91 14
	YA will create a stamina potion

	9 14
	Some doors can be opened with a ZO spell

	B9 16
	 The spell OH VEN casts a cloud of poison

	E1 E
	YA BRO creates a magical shield potion

	79 17
	Fireball FUL IR fireshield FUL BRO NETA

	F9 17
	Light OH IR RA darkness DES IR SAR

	49 36
	The keys to passage lie hidden deep

	39 20
	Neither chaos nor order is truly balanced

	A1 22
	The firestaff can restore balance or destroy it

	A1 23
	The power gem is sealed in the mountain by a strange magical force

	E9 21
	Balance is the ultimate good

	31 35
	ZO KATH RA might create plasma that…

	59 26
	I fear for the people of the world should the…

	A1 29
	I have given the firestaff much power…

	81 2A
	The firestaff can contain a being of pure alignment with its fluxcage

	E1 2B
	Once fluxcaged a being can be transmuted by the power of the Firestaff…

	C1 19
	Four potions for boasting skills…

	1 1B
	The spell YA BRO ROS leaves a trail of magic footprints

	31 1C
	Lightning bolt…

	A9 F
	Put the gem back …

	81 1C
	The spell OW EW RA bestows magic vision

	E9 1C
	Shield potion YA BRO. Magic shield YA IR

	61 1D
	Mana potion ZO BRO RA

	E9 1D
	Invisibility OH EW SAR

Textmute can be used on these text strings. While the hex values called will be the same, the text can be altered character for character to create new messages. Textmute can also decode the ‘garbage’ at the end of character pads to show the basic character stats (even gender) and modify them, creating brand new characters.

In any case, adding 8 to the third byte of the original text reference can cut off three letter blocks (spaces being a character) at a time, so that by cutting off the beginning of larger wall/scroll texts new words can be given.

Example: ‘The only way out is another way in’ (B9 31) can be shortened (+8 x 6 steps = +30) to ‘_another way in’ (E9 31)

Chesting

Chesting is (obviously) how to place objects in chests using DMute. Like floor tiles, chests reference the first object in a linked object list, and this list is then ‘present’ in the chest. To do this, follow these steps:

1) Create the objects you want to chest on a blank floor tile.

2) Look at the hex of the floor tile, noting the numbers in the 7th and 8th byte (the first object’s identifiers).

3) ‘Blank’ the floor tile (subtract 10 from the third byte, and replace the last two noted bytes with FE FF). The next time the graphics update the floor tile will be empty again. However, the object list still exists in memory.

4) Hex edit the chest desired, replacing the 3rd and 4th bytes with those noted above. The objects are now inside the chest.

Monsters follow exactly the same procedure (including which bytes are edited) to place objects inside them, which will be dropped instantly on their death. Also, creatures can be ‘chested’ inside creatures (this will crash the game if used in a chest). These creatures will appear like ordinary objects in DMute, and will only be dropped once the smoke disappears on a creature’s death.

Creating scroll text is a similar procedure to chesting an object (see text), except that you create a wall text in a blank wall tile. Edit the text as desired, and note the 7th byte of the wall hex/1st byte of the text hex only before blanking the tile. This byte is placed into the 3rd byte of the created scroll hex.
Items

All items usable by characters use four bytes, with the exception of chests that use eight. Items are split into several types (each with an individual object type ident).that are not interchangeable: weapons (14), chests (24), potions (20), clothes (18) and miscellaneous objects (28). Their object identifiers also indicate position on the tile, these default values indicating north-facing/top-left lying objects. Add 40, 80 and C0 to rotate the object clockwise on the tile. Scrolls (1C) are dealt with in the text section, but are the same as other items (weight 0.1kg). All individual item types are noted in various positions in the hex code, but all use the cycles of the range 0-3F, which repeats with no difference. DMute and DM use the range 80-BF, but monster items dropped use the range 0-3F. ie a falchion has 3rd byte 89, but a dropped falchion by a skeleton has 3rd byte 9.

Weapons:
The third byte (hex listed) is used for the item type, with the fourth byte usually used for charges, 0 otherwise. Charges are usually given from a range 0-3F, and reduce by up to 4 each use of the weapon.

	Hex
	Weapon name
	Weight
	Options
	Notes

	92
	Axe
	4.3
	Swing, chop, melee
	

	88
	Dagger
	0.5
	Throw, stab, slash
	

	A0
	Throwing star
	0.1
	Throw
	

	99
	Bow
	1.0
	Shoot
	Needs arrow/slayer in hand

	9F
	Poison dart
	0.3
	Throw, stab
	

	97
	Club
	3.6
	Throw, bash
	Left behind when blue ogre dies

	89
	Falchion
	3.3
	Swing, parry, chop
	Left behind when skeleton dies

	9E
	Rock
	1.0
	Throw
	Left behind when rock monster dies

	82
	Torch
	1.1
	Swing
	Starts with 3C ‘charge’ for lighting, burns when placed in the hand.

	8D
	Samurai sword
	3.6
	Slash, parry, melee
	

	9B
	Arrow
	0.2
	Throw, stab
	

	9D
	Sling
	1.9
	Shoot
	Needs rock in hand

	A2
	Staff
	2.6
	Swing
	+2 mana when held

	8A
	Sword
	3.2
	Swing, parry, chop
	Cursed if 1 present in 4th byte, cursed version dropped by knight on dying

	8C
	Sabre
	3.5
	Slash, parry, melee
	

	A4
	Teowand
	0.2
	Calm, Spellshield, Fireshield
	+6 mana when held, has 3C charges used for last two effects.

	8B
	Rapier
	2.6
	Jab, parry, thrust
	

	AB
	Horn of fear
	0.8
	Blow horn
	Generates fear effect

	84
	Staff of claws
	0.9
	Slash, brandish
	+4 mana when held

	90
	Vorpal blade
	3.0
	Jab, cleave, disrupt
	+4 mana, when held, damages non-corporeal creatures, has charge of 38 (no reason)

	A5
	Yew staff
	3.5
	Parry, light, dispel
	+4 mana when held, charge of 28, for last two effects.

	9C
	Slayer
	0.2
	Throw, stab
	

	9A
	Crossbow
	2.8
	Shoot
	

	AA
	Sceptre of Lyf
	1.8
	Parry, heal, light,
	+3-5 mana when held, 3C charges for last two effect

	A9
	Dragonspit
	0.8
	Swing
	+7 mana when held, planned code to absorb fireballs

	85
	Bolt blade
	3.0
	Jab, chop, lightning
	38 charges for lightning

	91
	The Inquisitor
	3.9
	Swing, thrust, berserk
	+2 to mana when held

	A6
	Staff of Manar
	2.9
	Swing, dispel, firesheild
	+10 to mana when held, 3C charges for last two effects

	95
	Mace of order
	4.1
	Swing, bash, stun
	+ 5 to strength when held

	8E
	Delta
	3.3
	Chop, melee, thrust
	+1 mana when held

	81
	Storm ring
	0.1
	Punch, lightning
	10 in charges for lightning

	AC
	Speedbow
	3.0
	Shoot
	

	93
	Hardcleave
	6.5
	Chop, cleave, berserk
	

	96
	Morningstar
	5.0
	Swing, stun, melee
	

	86
	Fury
	4.7
	Chop, melee, fireball
	20 in charges for fireball

	8F
	Diamond Edge
	3.7
	Stab, chop, cleave
	

	A7
	Snake staff
	2.1
	Heal, calm, brandish
	3C charges (no reason), +8 mana when held

	83
	Flamitt
	1.2
	Swing, fireball
	1C charges for fireball

	80
	Eye of time
	0.1
	Punch, freeze life
	14 charges for freeze life

	
	The conduit
	3.3
	Swing, lightning, window
	+15-17 to mana when held. Charges when held

	
	The Firestaff
	2.4
	Parry, brandish, fireshield,
	+1 to all levels when held

	
	The Firestaff+
	3.6
	Invoke, Fuse, fluxcage
	+2 to all levels when held

	A3
	Wand
	0.1
	Calm, spellshield, heal
	+1 mana when held, 3C charges for last two option

	18
	Stone club
	11.0
	Throw, bash
	Left when stone golem dies

	
	Stick
	0.8
	Swing
	

	
	Mace
	3.1
	Swing, bash, stun
	

Potions:

The fourth byte is used to identify the potion (given below), the third byte is used to indicate the strength. This is a continuous scale from 0 to FF, with power bands for different levels of experience.: LO = 0-3C , UM = 50-64, = 78-80, EE = , PA = C8-DC, MON = F0-FF. Empty flasks weigh 0.1kg, full flasks/bombs weight 0.3kg.

	Hex
	Potion
	Symbol
	Spell required
	Notes

	94
	Empty flask
	-
	-
	Required to be held for all potion spells

	89
	Neta
	NETA
	YA BRO NETA
	Vitality boosting potion

	83
	Ven bomb
	VEN
	ZO VEN
	Green bomb. Creates poison cloud when thrown and shatters (has throw option)

	88
	Dane
	DANE
	OH BRO DAIN
	Wisdom boosting potion

	87
	Ku
	KU
	FUL BRO KU
	Strength boosting potion

	8E
	Vi
	VI
	VI
	Health restoring serum, can cure body damage to champions

	86
	Ros
	ROS
	OH BRO ROS
	Dexterity boosting potion

	8A
	Bro
	VEN
	VI BRO
	Anti-poison serum

	8F
	Flask of water
	-
	
	Restores water to full level

	93
	Ful bomb
	Red, FUL
	-
	Red bomb. Creates fireball explosion when thrown and shatters (has throw option)

	8C
	Ya
	MON
	YA
	Stamina restoring potion

	
	Ma
	YA
	YA BRO
	Creates personal shield effect

	
	Ee
	BRO
	ZO BRO RA
	Mana restoring/boosting potion

	
	Sar
	ZO
	-
	Undrinkable

	
	Zo
	FUL
	-
	Undrinkable

	
	
	
	
	

Clothes:

Third byte (listed) gives clothing type.

	Hex
	Clothing
	Weight
	Notes

	95
	Ghi
	0.5
	

	96
	Ghi trousers
	0.5
	

	A0
	Aketon
	6.5
	

	93
	Blue pants
	0.6
	

	A5
	Hosen
	1.6
	

	83
	Sandals
	0.6
	

	85
	Robe (top)
	0.4
	

	86
	Robe (bottom)
	0.4
	

	8C
	Gunna
	0.5
	

	8A
	Silk shirt
	0.2
	

	91
	Leather pants
	0.8
	

	92
	Suede boots
	1.4
	

	90
	Leather jerkin
	0.6
	

	84
	Leather boots
	1.6
	

	94
	Tunic
	0.5
	

	81
	Cloak of night
	0.4
	+ 8 to Dexterity when worn

	B9
	Halter
	0.2
	

	9D
	Hide shield
	1.0
	Block and Hit options when held

	82
	Barbarian hide
	0.3
	

	8B
	Tabard
	0.4
	

	89
	Kirtle
	0.4
	

	99
	Barbarian helm
	1.1
	

	8D
	Elven doublet
	0.3
	

	8E
	Elven huke
	0.3
	

	8F
	Elven boots
	0.4
	+1-14kg to max load when worn depending on strength

	9C
	Buckler
	1.1
	

	9A
	Helmet
	1.4
	

	88
	Fine robe (bottom)
	0.3
	

	87
	Fine robe (top)
	0.3
	

	9E
	Wooden shield
	1.4
	Block and hit options when held, left behind when skeleton dies

	9F
	Small shield
	2.1
	Block and hit options when held

	9B
	Basinet
	1.5
	

	A1
	Leg mail
	5.3
	

	AA
	Large shield
	3.4
	Block and hit options when held

	A4
	Casque’n’coif
	1.6
	

	A2
	Mithril aketon
	5.2
	

	A3
	Mithril mail
	4.1
	

	A7
	Torso plate
	12.0
	Cursed if 1 present in 4th byte. Cursed armour left behind when knight dies

	B8
	Boots of speed
	0.3
	Provides faster than normal movement when worn unless character overloaded

	98
	Crown of Nerra
	0.6
	+10 to wisdom when worn

	B6
	Flamebain
	5.7
	+12 to fire-resistance

	A6
	Armet
	1.9
	Cursed if 1 present in 4th byte. Cursed armour left behind when knight dies

	A9
	Foot plate
	2.8
	Cursed if 1 present in 4th byte. Cursed armour left behind when knight dies

	A8
	Leg plate
	8.0
	Cursed if 1 present in 4th byte. Cursed armour left behind when knight dies

	AF
	Shield of Lyte
	3.0
	Block and hit options when held,

	AC
	Plate of Lyte
	10.8
	

	AE
	Greaves of Lyte
	2.4
	

	AD
	Poleyn of Lyte
	7.2
	

	B1
	Plate of Darc
	14.1
	Monsters less likely to hit character when worn

	B4
	Shield of Darc
	4.0
	Block and hit options when held, monsters less likely to hit character when worn

	B0
	Helm of Darc
	3.5
	Monsters less likely to hit character when worn

	B3
	Greaves of Darc
	3.1
	Monsters less likely to hit character when worn

	B2
	Poleyn of Darc
	9.0
	Monsters less likely to hit character when worn

	AB
	Helm of Lyte
	1.7
	

	97
	Calista
	0.4
	

	
	Dexhelm
	1.4
	+10 to Dexterity when worn

	
	Power towers
	8.1
	+10 to Strength when worn

	
	Cape
	0.3
	

Miscellaneous objects:
The third byte gives the item type, the 4th can be used for additional information.

	Hex
	Misc. objects
	Weight
	Notes

	A7
	Moonstone
	0.2
	+3 mana when worn

	82
	Jewel symal
	0.2
	+15 to anti-magic

	A9
	Pendant Feral
	0.2
	+1 wizard level when worn

	83
	Illuminet
	0.2
	Provides a basic light level when worn

	A6
	Ekkart cross
	0.3
	Possible aid with priest spell learning when worn

	A5
	Gem of ages
	0.2
	Possible aid with spell caster gaining levels

	AA
	Magic box
	0.6
	Blue, has ‘freeze life’ option

	AE
	Rabbit’s foot
	0.1
	Increases chances in combat slightly

	B0
	Choker
	0.1
	

	A0
	Cheese
	0.8
	Consumable

	81
	Water skin
	0.3-0.9
	Empty skin weights 0.3kg, each level of water adds 0.2kg, levels represented by 0, 40, 80, C0 in the fourth byte (three water levels)

	A3
	Drumstick
	0.4
	Consumable, left when rat dies

	91
	Gold key
	0.1
	

	93
	Topaz key
	0.1
	

	80
	Compass
	0.1
	N/E/S/W facing indicated by 0, 40, 80, C0 in 4th byte

	8A
	Key of B
	0.1
	

	97
	RA key
	0.1
	

	88
	Gold coin
	0.1
	‘Flip’ option

	AB
	Magic box
	0.9
	Green, has ‘freeze life’ option (longer then blue box)

	99
	Boulder
	8.1
	Left behind when rock monster dies

	92
	Winged key
	0.1
	

	84
	Ashes
	0.4
	

	B2
	Magnifier
	0.2
	

	A4
	Dragon steak
	0.6
	Consumable, left when dragon dies

	8E
	Cross key
	0.1
	

	8C
	Square key
	0.1
	

	85
	Party bones
	1.5
	4th byte indicates party member, 0, 40, 80, C0 from left – right

	
	Screamer slice
	0.5
	Consumable, left when screamer dies

	AD
	Rope
	1.0
	‘Climb down ‘option for pits

	9F
	Bread
	0.3
	Consumable

	9D
	Apple
	0.4
	Consumable

	9E
	Corn
	0.4
	Consumable

	95
	Emerald key
	0.1
	

	89
	Iron key
	0.2
	

	86
	Copper coin
	0.1
	‘Flip’ option

	87
	Silver coin
	0.1
	‘Flip’ option

	8B
	Solid key
	0.1
	

	9A
	Blue gem
	0.2
	

	AC
	Mirror of dawn
	0.3
	

	8D
	Turquoise key
	0.1
	

	AF
	Carbonite
	0.0
	

	9B
	Orange gem
	0.3
	

	90
	Skeleton key
	0.1
	

	A8
	The hellion
	0.2
	Rumour of attracting Lord Chaos when worn

	
	Bones
	0.8
	

	
	Green gem
	0.2
	

	
	Worm round
	1.1
	Consumable, left when purple worm dies

	
	Lock picks
	0.1
	

	
	ZOKATHRA
	0.0
	Created from spell ZO KATH RA

Chest:
Chests weight 5kg, and have space for 8 small/medium items. It also uses 8 bytes for hex. Bytes three and four are used to reference the unique identifier of the first object in the linked list contained inside (see ‘Chesting’ section). The other four are set to 0, though the fifth byte sometimes appears as F9 (and 1 has been seen) for no reason. Other bytes possibly used when for chest in a character’s hand.
Pressure pads and wall objects

This is the most important section, as wall objects and pressure pads (object ident. C, D or E) are the most complicated and important parts of the game. These objects are almost identical, except that activation to them is different, and wall objects can have four positions (north, south, east, west) on a tile, while pressure pads are always central. Wall objects also have a larger range of graphics available to them than pressure pads. Note that alcoves are a type of wall object with only one difference (hex needed to activate them), and monster generators are a special type of inactive pressure pad, so both contribute to the maximum number.

When changing the graphics of wall objects, be aware that the first few numbers of graphic (depanding on level) are also used as random level graphics. So, changing the graphic 1 to keyhole might result in decorative keyholes appearing around the level.

Object hex breakdown:

All use 8 bytes, with the break down as follows.

3rd and 4th byte: The third byte is used to determine what effect activates the object. Almost all are based around the 0-F range, using couplets with the 80-8F range too. (e.g. 4/84). The fourth byte is the used as an additional quantifier in many cases. For example, 4/84 in the 3rd byte means activation by object (like a key in a lock), with the fourth byte used to denoted which object (4 10 being dagger, and 84 10 being ?). Unless otherwise stated, wall objects activate from first downward. Therefore a 4/84 wall object will stop another needing the same type below activating (though a 3/83 would not). All pressure pads activate

	3rd byte
	Wall object activation
	Pressure pad activation

	0
	Activated by nothing
	Activated by nothing.

	1
	Activated by mouse, for alcoves activated by any object
	Activated by everything, including Theron. Direction only activation can be indicated using 1/81:

81 0 = north facing

1 1 = east facing

81 1 = south facing

1 2 = west facing

Theron cannot activate these pads

	2/82
	Activated by item if object is an alcove (4/84 does not work in alcoves). Same list as 4/84
	

	3/83
	Activated by item, item remains in hand after activation. Same list as 4/84
	3 indicates activated by party. Direction effect can be created in the same way as 1.

	4/84
	Activated by item, item lost after. 4th byte used to indicate item required for activation (see list ‘Item Activation’ below)
	Activated by a specific item placed on the pad. See list ‘Item Activation’

	5/85
	Activated by various effect from another object. Facing of activation depend on function, usually needed for more complex arrangements. Indicated by numbers in the 4th byte. See ‘Complex Puzzles’.
	

	6/86
	‘Counting’ pad, activated by ‘close’ effect from another object. Facing of activation not important, 4th byte used to indicate number of activations required. See section ‘Complex Puzzles’.
	Special type of pressure pad, a monster generator. An ‘open’ effect will cause a monster to be generated on the tile. See section on ‘Monster Generators’.

	7
	
	Activated by monster. Direction effect can be created in the same way as 1. Works oddly for ¼ tile monsters

	8/88
	Creates a special type of wall object, a shooter. Object fires a specific spell if activated by an effect on the correct wall face. (see section ‘Shooters’)
	Activated by party if they are carrying a specific item. Same list as for 4/84

	9/89
	As 8/88, but used creates a ‘weapon shooter’.
	

	A/8A
	As 8/88, but a double fire effect is created.
	

	B/8B
	Exactly like 4/84 wall objects, except wall object must be last one in the list to activate. Activation causes it to toggle its place in the object list.
	

	C
	Activated by mouse, only if object is the last wall object in the object list. Activation causes it to toggle its place in the object list
	

	D/8D
	Uses the item list for 4/84. This item will be inserted or removed (if item present and an empty hand used) from the wall tile, an activation taking place in either instance. Activation of the wall object causes it to toggle its position in the object list.
	

	E
	As 8/88, but creates a general item shooter (needs ammo).
	

	F
	As E, but a double fire is created.
	

	10/90
	Activated by item as long as it is the last wall object in the object list. The item is then placed in the wall (last item) and replaced by the first item present in the wall tile. If no items are present on the tile, then this wall object behaves as a 3/83 object instead. Uses the same list as 4/84.
	

	11/91
	Activated by item as long as it is the last wall object in the object list. The item and wall object are then removed. If the wall object is the only wall object remaining in the list it behaves as a 4/84 object instead. Uses the same item list as 4/84
	

	12
	An ‘end game’ pad, activated by any effect (see section below)
	

	7F/FF
	Creates the champion ‘mirror’. 4th byte indicates champion portrait (glitched graphic unless placed on level 1), and pressing it will crash the game unless character pad (any) is placed on the floor tile in front. See the ‘Champion Mirror’ section.
	

5th byte: This byte governs the effect generated on activation. Some activation types generate other effects (monster generators and shooters) that ignore this byte, and also objects can be made inactive (in the sixth byte) so this effect is not generated. Otherwise, the effect given is generated to the tile that is targeted by the 7th and 8th bytes. The fifth byte also governs any additional conditions that will start (or end) this effect. For every hex code, adding 4 to it will make it a ‘once only’ effect – after the effect is generated it will ‘blank’ the 3rd and 4th byte to 0, so that no further activations are possible. This is true even of ‘inactive’ objects. Hex codes are as follows:

Hex code
Effect

0

Open/activate

8

Close/deactivate

10

Toggle (acts as close to active and open to inactive)

18

Open, needs constant weight (pressure pads)

20

Open, only generated on stepping out/removal of item

28

Close, only generated on stepping out/removal of item

30

Toggle, only generated by stepping out/removal of item

38

Close, needs constant weight (pressure pads)

The list then repeats for the other cycles 40-78, etc. The 1st and 3rd cycle are silent, whist the 2nd and 4th produce the ‘click’. The 1st two cycles react faster (to the button press, etc) whist the last two cycles react to a presence (for pressure pads, etc).

For example, 38 (close, constant weight) is used in the Librasulus trap at the start of DM to activate (with a direction effect) a teleporter to keep the party facing north. If 98 or F8 was used instead, the party could turn THEN would be rotated back.

6th byte: Consider in the form XY. X = the graphic number displayed by the wall object or pressure pad in the tile. Pressure pads only have at most graphics 1-6 associated with them, depending on the level (level 3 has only 1 and 2). If a graphical number is used higher than is available, a multicoloured graphical glitch will occur. For wall objects, more graphics are available (up to Fx), but if not then a ‘garbled text’ glitch will occur. Both are covered in the ‘DM and DMute Problems’ section. 0x will create an invisible pad, in the case of wall objects a blank wall shown. For wall objects, the last object in the linked list will be the graphic displayed (as long as there are no items in the middle), and this object determines the areas that can be clicked on to activate. This way, an invisible pad can block higher list objects from activating.

Y = the length of delay, from 0–7 (0 = no delay) before the effect from the 5th byte is generated. Y = 8 indicates that the object is ‘inactive’, in that it will not generate any targeted effects when activated. Higher numbers seem to act as an inactive indication.

7th and 8th byte: If the object is inactive, then these bytes are usually only used for exceptions such as monster generators and shooters. The only exception to this is placing 10 in the 7th byte for a wall object. In this case activating it will cause it to down shift all wall objects in the linked object list and place the last to the first place. This is the effect that a D/8D object undergoes.

If the object is active, then these two bytes indicate the level co-ordinated the effect will target. Co-ordinates in this case are relative to the top left corner, not global like the co-ordinates displayed in DMute, and start at (0,0). As the largest level size is 32 square, then co-ordinates can be represented by two 5-bit binary numbers in the form (x4x3x2x1x0, y4y3y2y1y0). The 7th and 8th bytes are then formed from the binary numbers x1 x0 0 0 0 0 0 0 and y4 y3 y2y y1 y0 x4 x3 x2. An additional effect of targeting a face of the tile can be achieved by adding the hex value 10 (east), 20 (south) or 30 (west) – the default is north (+0). For example, wall texts and shooters require the correct facing to activate. There is no way to get a wall object/pressure pad to target a different level directly.

Item activation list:

Any item can be used to activate wall objects and pressure pads, in a number of ways. All methods use the same ‘two bank’ means from the 3rd byte (4/84 the most common), with the object then reflected in the 4th byte hex. All variations of the same object (all torch states, charged/uncharged weapons, empty/full water skins) are represented by the same hex value.

	4th byte
	1st bank – 3rd byte 4
	2nd bank – 3rd byte 84

	0
	Compass
	

	1
	
	

	2
	Torch
	Torch

	3
	Torch
	Torch

	4
	Waterskin
	

	5
	Jewel symal
	

	6
	Illuminet
	

	7
	Flammit
	

	8
	Eye of time
	

	9
	Storm ring
	

	A
	Staff of claws
	

	B
	
	Bolt blade

	C
	
	Fury

	D
	
	The Firestaff

	E
	The Firestaff (with Power Gem)*
	

	F
	Scroll
	Open scroll

	10
	Dagger
	Falchion

	11
	Sword
	Rapier

	12
	Sabre
	Samurai sword

	13
	Delta
	Diamond Edge

	14
	Vorpal blade
	The inquisitor

	15
	Axe
	Hardcleave

	16
	Mace
	Mace of Order

	17
	Morningstar
	Club

	18
	Stone club
	Bow

	19
	Crossbow
	Arrow

	1A
	Slayer
	Sling

	1B
	Rock
	Poison dart

	1C
	Throwing star
	Stick

	1D
	Staff
	Wand

	1E
	Teowand
	Yew staff

	1F
	Staff of Manar
	Snake staff

	20
	The Conduit
	Dragonspit

	21
	Sceptre of Lyf
	Robe (top)

	22
	Fine robe (top)
	Kirtle

	23
	Silk shirt
	Elven doublet

	24
	Leather jerkin
	Tunic

	25
	Ghi
	Mail aketon

	26
	Mithril aketon
	Torso plate

	27
	Plate of Lyte
	Plate of Darc

	28
	Cape
	Cloak of night

	29
	Berserker hide
	Robe (bottom)

	2A
	Fine robe (bottom)
	Tabbard

	2B
	Gunna
	Elven huke

	2C
	Leather pants
	Blue pants

	2D
	Ghi trousers
	Leg mail

	2E
	Mithril mail
	Leg plate

	2F
	Poleyn of Lyte
	Poleyn of Darc

	30
	Berserker helm
	Helmet

	31
	Basinet
	Casque’n’coif

	32
	Armet
	Helm of Lyte

	33
	Helm of Darc
	Calista

	34
	Crown of Nerra
	Buckler

	35
	Hide shield
	Small shield

	36
	Wooden shield
	Large shield

	37
	Shield of Lyte
	Shield of Darc

	38
	Sandals
	Suede boots

	39
	Leather boots
	Hosen

	3A
	Foot plate
	Greaves of Lyte

	3B
	Greaves of Darc
	Elven boots

	3C
	Gem of ages
	Ekkhard cross

	3D
	Moonstone
	The hellion

	3E
	Pendant feral
	Copper coin

	3F
	Silver coin
	Gold coin

	40
	Boulder
	Blue gem

	41
	Orange gem
	Green gem

	42
	Magic box (blue)
	Magic box (green)

	43
	Mirror of dawn
	Horn of fear

	44
	Rope
	Rabbit’s foot

	45
	Corbomite
	Choker

	46
	Dexhelm
	Flamebain

	47
	Power towers
	Speedbow

	48
	Chest
	Open chest

	49
	Ashes
	Party bones

	4A
	
	

	4B
	
	Ven bomb

	4C
	Sar (?) potion
	Zo (?) potion

	4D
	Ros potion
	Ku potion

	4E
	Dain potion
	Neta potion

	4F
	Bro potion
	Ma potion

	50
	Ya potion
	Ee potion

	51
	Vi potion
	Flask of water

	52
	
	

	53
	
	Ful bomb

	54
	Apple
	Corn

	55
	Bread
	Cheese

	56
	Screamer slice
	Worm round

	57
	Drumstick
	Dragon steak

	58
	Iron key
	Key of B

	59
	Solid key
	Square key

	5A
	Turquoise key
	Cross key

	5B
	Onyx key
	Skeleton key

	5C
	Gold key
	Winged key

	5D
	Topaz key
	Sapphire key

	5E
	Emerald key
	Ruby key

	5F
	RA key
	Master key

	60
	Lock picks
	Magnifier

	61
	Boots of speed
	Empty flask

	62
	Halter
	ZOKATHRA

	63
	Bones
	

	64
	
	

	65
	
	

	66
	
	

	67
	
	

	68
	
	

	69
	
	

	6A
	
	

	6B
	
	

	6C
	
	

	6D
	
	

	6E
	
	

	6F
	
	

* DMute assigns the wrong value for this item.

Champion mirrors:

Champion portraits can be created in any wall object, by placing 7F/FF in the 3rd byte. The ‘mirror’ can be active or inactive, and the effect will be generated once only when the champion is properly selected. Once selected, the ‘mirror’ is then blanked with the 3rd and 4th bytes replaced by 80 0. The champions’ portraits are only available on level 1, with a glitched graphic being displayed and picked up otherwise. The mirrors must have a character speaking pad in front of it (preferably silent) or else selecting it will cause a freezing crash. If another type of pad is placed, the game will select the character but crash after a few steps. The character portrait will appear over any other wall objects if two or more are placed in the same tile. It is inadvisable to place any other wall objects on any other face of the same wall tile .Any items placed on the same facing in the tile will appear in the champion’s inventory in the appropriate slots, and be taken on selection. Character portraits (actual character decided by the pad used – see ‘Text’ section) are determined by the 4th byte as follows:

	4th byte
	1st bank – 3rd byte 7F
	2nd bank – 3rd byte FF

	0
	Elija Lion of Yaitopyah
	Halk the Barbarian

	1
	Syra Child of
	Hissssa Lizard of Makan

	2
	Zed Duke of Banville
	Chani Sayyadina Sihaya

	3
	Hawk the Fearless
	Boris Wizard of Baldor

	4
	Mophus the Healer
	Leif the Valiant

	5
	Wu Tse Son of Heaven
	Alex Ander

	6
	Linflas
	Azizi Johari

	7
	Iaido Ruyito Chiburihi
	Gando Thurfoot

	8
	Stamm Bladecaster
	Leyla Shadowseeker

	9
	Tiggy Tamal
	Sonja She Devil

	A
	Nabi the Prophet
	Gothmog

	B
	Wuuf the Bika
	Daroou

To recap from the text section, the corresponding text pads needed (with 3rd/4th bytes) are:

	Hex
	Champion
	Hex
	Champion
	Hex
	Champion

	49 28
	Hissssa
	1 0
	Daroou
	99 5
	Iaido

	9 29
	Gothmog
	49 1
	Wu Tse
	51 6
	Zed

	E1 C
	Sonja
	F9 4
	Tiggy Tamal
	81 3
	Elija

	1 A
	Leyla
	99 0
	Halk the Barbarian
	61 B
	Chani

	61 9
	Wuuf
	41 4
	Syra
	91 D
	Hawk the Fearless

	B1 A
	Mophus
	9 7
	Gando Thurfoot
	21 C
	Boris

	19 8
	Stamm
	C9 8
	Linflas
	41 E
	Alex Ander

	1 2
	Azizi Johari
	D9 2
	Leif the Valiant
	39 2B
	Nabi the Healer

A toggling effect for champion mirrors can be achieved. However, simply placing two wall objects together, or even adding an inactive toggle object, will create a situation where a champion mirror does not blank after use, but remains active so that a duplicate character with no items can be gained as many times as wanted. To do it properly, make sure at least one item is ‘in’ the mirror. Place the wall object graphic that is to be toggled to after the item(s), when the character is selected the wall object will be updated to the new one without any problems (last graphic in a list is the displayed one)

Shooters:

These wall objects do not need to be created from actual shooter graphics – any graphic (even an invisible pad) can be used. The wall object are best inactive (use DMute gui, or alter the 6th byte to x8), and the code below used to create the shooter of choice in the 3rd and 4th byte. The 7th byte is changed to 0 (except for object shooters), though especially in the Diamond Edge puzzle x0 has been observed There seems to be no effect for this, however. The 8th byte is now used to represent power, from 0 – F (affecting spell size or object damage). A spells range can be inversely affected by use of 0x – Fx in the 8th byte. 0 gives infinite range, the rest reducing a spell’s range from over 100 tiles to about 2-3.

To activate a shooter, the trigger can set either an open or close effect, but must target the face the wall object is on. This will cause the shooter to fire once from a random side (except for weapon shooters, which fire on both sides simultaneously). See ‘Complex Puzzles’ for ways to create continuous fire, switching on/off effects and also fire limiting for the object shooter.

Spell:

Hex (3rd/4th)

Effect

8 0

Fireball

8 1

Lightning bolt

8 2

ZO spell

8 3

Poison bolt

88 0

Poison blob (not available as a spell)

88 1

DES EW (destroy non-corporeal)

88 2

Fuse? (no effect on non-corp., Chaos or doors)

88 3

Poison cloud

Adding 2 to the third byte will create a double fire effect like the weapon shooter. Higher 4th byte numbers seem to give the same fuse? option as 88 2

Weapon:

This needs no ammo, and will fire any of the following:

Hex (3rd/4th)

Weapon

9 2

Torch (burnt out)
9 3

Torch (burnt out)

9 10

Dagger

9 1A

Slayer arrow

9 1B

Rock

9 1C

Throwing star

9 40

Boulder

89 2

Torch (burnt out)
89 3

Torch (burnt out)

89 19

Arrow

89 1B

Poison dart

The launcher will run out after about 50 (tested to 47) firings except in the case of boulders where the figured seemed double this.

Object:

Using the hex E 0 for the 3rd/4th byte, and 0-FF for range/power in the 8th byte, a shooter can be set up that will fire any item placed into the wall, firing one item per activation, starting with the topmost. If the shooter tries to fire with an empty wall the game will crash. If F is used in the 3rd byte instead, the shooter will fire the first two available items in the wall.

Monster generators:
A special type of pressure pad. If 6/86 is present in the 3rd byte then all other bytes except the 4th have different functions. The fourth gives the monster type generated as follows:

	Hex byte
	1st bank – 3rd byte 6
	2nd bank – 3rd byte 86

	0
	Giant scorpion
	Poison slime

	1
	Giggler
	Wizard’s Eye (beholder)

	2
	Pain rat
	Ruster (small scorpion)

	3
	Screamer
	Rock monster

	4
	Ghost
	Stone golem

	5
	Mummy
	Black flame (fire elemental)

	6
	Skeleton
	Couatl (flying serpent)

	7
	Vekrix (jawa)
	Magenta worm

	8
	Trolin
	Giant wasp

	9
	Animated armour
	Materialiser (fader)

	A
	Water elemental
	Oitu (giant spider)

	B
	Demon
	Lord Chaos

	C
	Red Dragon
	Lord Librasulus (evil)

	D
	The Grey Lord (good)
	

	
	
	

The 5th byte is set to 0 or 80 for various number generation, with 40 appearing once in DM, which in general acts exactly like 0. The sixth byte first number still represents the graphic of the pressure pad. For ‘pots’ for fire elementals, on level 13 only, use 1x. The second number represented how many creatures are generated, the range 8 – F used (it repeats in 0 – 7 exactly, though DMute displays it as though it is a pressure pad).

	6th byte, 2nd number
	Monsters generated - 5th byte 0
	Monsters generated - 5th byte 80

	8
	None – causes crash
	1*

	9
	2*
	3

	A
	4*
	2-3

	B
	2-3
	2-3

	C
	None - causes crash
	1

	D
	1-2
	1-3

	E
	1-4*
	1-4

	F
	1-4
	1-4

* used by DMute.

Invisible monsters can be generated by giving large number generation to large creatures (2 or more for dragons, 3 or 4 to purple worms, etc). See ‘Invisible Creatures’ in the ‘Monsters’ section.

The 7th byte is used to alter the monster toughness of generated monsters. 0 giving the default monsters, values up to FF toughening creatures up. Toughness of generated creatures is also altered by the level deepness number, which can be altered through Textmute.

The 8th byte introduces a delay in generating creatures again. A value of 0 gives no delay (creatures generated every time the generator is activated), the default value of 88 from DMute giving a significant pause before the generator can be activated again.

Complex Puzzles:

Wall objects using the 5/85 and 6/86 (see counting pads) codes are activatable by open, close, toggle etc.- effects to the tile. For 5/85, activating different faces on the same object, and using various codes for the 4th byte can generate various complex effects and puzzles.

The basic principle behind the 5/85 is simple. These pads ignore the orienation of the wall object except in special circumstances. Each face is separate, and can either be active or not. If all four faces are active, then the pad itself is active, and infact behaves like a floor pressure pad being stepped on.. An active pad can even generate a constant weight effect as it is always on until the state is changed.

Each state has a hex code in the 3rd and 4th bytes. In the table below a four bit number will represent the state of the four faces going clockwise from north. A trigger, targeting a face can alter the state to another hex code.

E.g. A toggling trigger with +20 for the 7th byte will be targeting the south face. If in this case the trigger was activating a 85 7 object, then the state would toggle from 0000 to 0010, and the hex from 85 7 to 85 5.

There are four different series of pads. The first series requires a close effect to activate each face. The second is the same, except an open effect is required on the north face instead. The third requires an open effect for the east face, and the final series requires open effects for north and east faces instead.

	Face state

(N/E/S/W)
	All close activated
	Open on North face, close rest
	Open on east, close on rest
	Open N/E, close S/W

	0000
	85 7
	5 F
	85 16
	5 1E

	0001
	85 3
	5 B
	85 12
	5 1A

	0010
	85 5
	5 D
	85 14
	5 1C

	0011
	85 1
	5 9
	85 10
	5 18

	0100
	85 6
	5 E
	85 17
	5 1F

	0101
	85 2
	5 A
	85 13
	5 1B

	0110
	85 4
	5 C
	85 15
	5 1D

	0111
	85 0
	5 8
	85 11
	5 19

	1000
	5 7
	85 F
	5 16
	85 1E

	1001
	5 3
	85 B
	5 12
	85 1A

	1010
	5 5
	85 D
	5 14
	85 1C

	1011
	5 1
	85 9
	5 10
	85 18

	1100
	5 6
	85 E
	5 17
	85 1F

	1101
	5 2
	85 A
	5 13
	85 1B

	1110
	5 4
	85 C
	5 15
	85 1D

	1111
	5 0
	85 8
	5 11
	85 19

Below gives common uses of pads in DM. However they are quite versatile and so these instances are by no means the easiest ways to produce the effects. The simplest means to use the pads are to either have a constant weight floor pad targeting the correct effect to each face used, or a lever/push button with a toggle effect. You don’t have to use all four faces, as long as you have all unused faces active to begin with (0011 would let you need only two faces to be activated like 5 18). If you have a 1111 pad, like 5 0 or 85 8, then retargeting an activating effect to the pad will generate the pad’s effect again.

Basic pads:

3rd/4th byte 5 0 creates a basic ‘close’ activated pressure pad. Placing this in the bottom of a list, inactive with 7th byte 10 will create a toggle effect as with the 4th Iron key in the DM riddle room. This is the case where orientation of the pad must be taken into account, the correct face with the graphic must be targeted

Another basic ‘open’ activated pad is 85 8. It is used in the Librasulus trap, and as seen,0 is especially useful for any continuous effect that needs triggered, by placing a second open activated pad in the list, which generates an open effect back to the same tile, with a delay as required. So the original trigger will affect the tile, triggering the effect, but then the second pad triggers too, triggering the original AND triggering itself. This effect can be stopped by targeting an open effect to any other face.

Counting:

The following hex will cause the pad to count the number of close activations before generating its effects (this will only happen once). This is the effects that are used at the riddle room. These pads do not rely on facing.

Hex
Number of activations needed

86 0
1

6 1
2

86 1
3

6 2
4

86 2
5

And so on….these really do go on, tested to 86 15 and still working! It is this type of pad that is used in any puzzle requiring multiple activations of the same object (The Vault), and also in the level 6 riddle room.

Toggling pads:

The code 5 18 for the 3rd/4th byte will create a pad that requires two inputs to work, from two opening triggers. Set the activations to toggle, for example levers, and also have one trigger with +10 to the 7th byte (east facing). If the two triggers are toggling the pad to open, then a constant weight effect can be used too, and open, for example a door (this is how the two lever DM door works on level 2 – though this is very adaptable). Both switches have to be up for the door to open, if not door remains closed.

The ‘King Filias, explorer of combinations’ puzzle on level 6 uses almost the same idea, with two changes. Firstly, there are an additional two switches with toggles, targeting with +20 and +30 in the 7th byte respectively, and if either of these two are active then the main pad will not activate. Two, the 3rd/4th bytes are 85 1 on the pad.

The code 85 0 will created another type of dependant triggering pad (see the DM skeleton level, the two teleporters). These pads need closing effects to activate. If two or more are placed on a square, with one targeting a close effect back into the original tile with +30 in the 7th byte, then others can be set to generate whatever effect (toggle a teleporter, constant monster generation). The pads can be triggered with an ordinary close effect, and can then only be stopped by an open effect, with this trigger requiring a +20 in the 7th byte.

The shifting pits at the end of level 12, before the master key, can be created, or any similar puzzle, as follows. For this, any phrases in italics are things I think aren’t important. Some form of close activated/face dependant 3rd byte 5 pads are used to create this effect. 8 wall objects are needed in the same tile. This square is activated by a normal close effect from whatever trigger.

The first four pads, north facing, have 3rd byte 5, and 4th byte respectively 10, 18, 8, 0. They activate the square they are on with a toggle (5th byte 10) effect, and the 1st and 3rd object must have 10 added to their 7th byte. These pads should have whatever timing delay required for use (1 for the pits).

The last four pads, south facing, are set to target whatever (pits, walls, doors, teleporters) in descending order from first to last in the cycle. 7th bytes have 10 added to them. The 3rd bytes are 5, and the 4th bytes are, respectively, 10, 18. 8 and 0 again. The effect generated should be open/close, needs constant weight (6th byte 98 for the pits). The targeted objects should initially all be set to their active setting (the pits were all open).

End game pad

Placing 12 in the 3rd byte of a wall object creates an important pad. If this pad is targeted by an effect from something else, then it will end the game! The game will be frozen for a second if the pad is inactive, if active it will freeze for the length of time determined by the delay. After this, the game ends and a screen with the characters portrait and stats is displayed, and clicking the mouse on this screen brings up the final ‘The End’ screen.

Monsters

Monster hex:

Monsters (object ident.10) use 8 bytes, plus another 6-9 bytes not seen by DMute. The 3rd/4th bytes are usually FE FF, as these are the bytes reserved for unnatural monster-carried objects, and reference the first object in the linked list carried (see ‘Chesting’). The 5th byte is used to denote the creature type, as follows:

	Hex
	Creature type
	Items dropped
	Nos.
	Notes

	0
	Giant scorpion
	
	1
	Powerful poison (3 health damage, long lasting), resistant to fire

	1
	Swamp slime (poison slime)
	
	1-4
	Poisonous, fires poison bolt (normal)

	2
	Giggler
	
	1-4
	

	3
	Wizard’s eye (beholder)
	
	1-4
	Fires lightning bolts and Z0 spells (low level) , flyer

	4
	Pain rat
	Drumstick
	1-2
	Fearless

	5
	Ruster (small scorpion)
	
	1-2
	Originally meant to rust weapons. Poisonous (normal)

	6
	Screamer
	Screamer slices
	1-4
	Fearless, susceptible to sharp objects, medium fire resistant

	7
	Rockpile (rock monster)
	Rocks and boulders
	1-4
	Susceptible to poison, poisonous (short lasting), armoured

	8
	Ghost
	
	1-4
	Immune to normal weapons, flyer

	9
	Stone golem
	Stone club
	1
	High armour, immune to magic

	A
	Mummy
	
	1-4
	Immune to poison

	B
	Black flame (fire elemental)
	
	1
	Immune to normal weapons, absorbs fireballs

	C
	Skeletons
	Falchion and wooden shield
	1-4
	Immune to poison, low morale

	D
	Couatl (flying serpent/dragon)
	
	1
	Flyer, poisonous (normal)

	E
	Vekrix (jawa)
	
	1-4
	Fires fireball, poison cloud, lightning bolt and ZO spells (maybe poison dart – all low level)

	F
	Magenta worm
	Worm rounds
	1-2
	Poisonous (normal)

	10
	Trolin (blue ogre)
	Club
	1-4
	Susceptible to poison, low morale

	11
	Giant wasp
	
	1-4
	Poisonous (long lasting), flyer

	12
	Animated armour (knight)
	Armet, Torso plate, leg plate, foot plate. 2 swords (all cursed – lowers ‘luck’ factor)
	1-4
	High armour, immune to magic, fearless.

	13
	Materialiser (Xytaz/fader)
	
	1-4
	Immune to normal weapons, only susceptible to DES EW spell when attacking, fires fireballs and poison clouds (medium), flyer

	14
	Water element
	
	1
	Attack any character, immune to normal weapons

	15
	Oitu (giant spider)
	
	1
	Low morale

	16
	Demon
	
	1-4
	Fires fireballs (medium)

	17
	Lord Chaos
	
	1
	Fires lightning bolts, fireballs, DES EW, poison clouds and poison bolts (all random levels to high). Flyer, immune to magic and freeze life effects, regenerates on death, able to teleport (2 square range, only 1 through walls). Not immune to calm. Actually three monster types created if selected (Chaos, Good, Evil).

	18
	Red dragon
	~8 Dragon steaks
	1
	Fires fireballs (random range to high)

	19
	Lord Librasulus (evil)
	
	1
	Fires fireballs (medium), immune to all damage and freeze life effects, teleports (range 2-3 squares), flyer

	1A
	The Grey Lord (good)
	
	1
	Cannot move, always facing, immune to all damage, flyer

	
	
	
	
	

Assuming the next 12 bytes, only three visible, are in blocks of three for each possible monster, and are identical. Also possible that the 6th byte is unique, and then there are 8 bytes, two visible, in blocks of two and identical. Byte 6 indicates the monster’s position on the floor, though whether all possible arrangements or individual monster position i. The are 9 possible – the usual four positions of single square creatures, the middle of the tile, and the four positions that double sized creatures take up (rats, worms..).It perhaps takes into account facing too. Personally, I think the first, each creature given a unique position/facing on the tile.

The last two visible bytes (7th and 8th) give the health of the first creature, in hex. Byte 7 is the main byte, byte 8th used to give additional bits for health larger than 255. DMute doesn’t allow anything above 10000 health (10 27) though it doesn’t seem to cause problems to DM itself.

The 6th byte observed for various groupings is as follows (positions given as would be observed in DMute).

	Hex
	Position (of one)
	Number and creatures observed using it

	0
	Various
	Observed in dead and DMuted creatures

	FF
	Middle
	Any single, centred creature (large automatically like this)

	6C
	Top left
	4 mummies, 4 screamers, 4 ogres

	1B
	Bottom left
	3 mummies, 4 mummies, 4 ogres, 4 screamers, 4 skeletons, 3 ogres

	31
	Top right
	3 rocks, 3 beholders

	1
	Top right
	2 screamers, 2 gigglers, 2 jawas, 2 demons, 2 rocks

	B1
	Top right
	4 screamers, 4 skeletons, 4 faders

	2
	Left
	2 worms

	D
	Left
	2 worms

	8
	Left
	2 worms

	C6
	Bottom right
	4 mummies, 4 screamers, 4 skeletons

	6
	Bottom right
	2 rocks, 2 faders, 2 mummies, 2 poison slimes, 2 skeletons, 2 knights

	B
	Bottom left
	2 mummies, 2 ogres, 2 wasps, 2 demons, 2 screamers

	2C
	Top left
	3 mummies, 3 wasps, 3 ogres

	C
	Top left
	3 skeletons, 2 skeletons, 2 beholders, 2 wasps, 2 knights

	7
	Left
	2 worms

	2C
	Top left
	3 mummies, 3 ogres

DMute seems to assign C to Magenta worms, which causes a graphical/spell collision bug. Changing all worms to 6th byte D, for example, gives normal results.

Replacing monsters types:

Each DM level can only have a certain amount of monster types present (see ‘Dungeon levels’ in the appendix II). In order to add new monster types to a level using DMute, if the level is already at it’s maximum, then all instances (monsters and monster generators) must be removed in favour of the new creature. Either way, once the new monster type is present, a ‘check level integrity’ must be performed or else the creatures will die as soon as the game starts/they are generated.

Monster colours:

This whole section should be considered in italics.

The DM palette works based on two palettes of 16. The first palette is used to draw the inventory, interface, and objects in the inventory, and is untouched throughout the game. The second palette has two properties. First, this palette is darkened or lightened depending on the light levels, and is used to draw everything inside the game window. Secondly, only 14 colours remain unchanged. The last two are altered for on the level, and they are determined by the monsters present.
Monsters have a priority order. The highest priority monster will determine the final two palette colours, which is why monster colours can be affected in a DMute dungeon. Colours associated and priority order is as follows:

Colours

Creature

Level

Rust/red and brown

Dragons and demons

13, 14

*1 Orange and dark orange
Oitu and materialisers

12

*1 Blue and dark blue

Trolins and water elementals

3, 11

Pink and purple

Magenta worm

4

*2 Khaki and brown

Pain rat, ruster, vekrix

9

Green and orange

Couatls and swamp slimes

5

*2 Yellow and gold

Giant scorpion and wizard eye
6, 10

Flesh and orange

None

1,2,7,8

*n I’ve had these lower ones affecting the palette of the higher related one in a maximum level.

The levels given are the starting colours. Obviously all other creatures do not affect, and are unaffected, by changes in the last two colours. The colour register will be readjusted when a higher level creature is introduced AND the maximum number monsters is reached, which is why monster colours are sometimes altered, for better or worse. In order to adjust to any colour for a higher level monster (changing dragon colour, for example), then introduce a lower monster (and its colour) as the dominant one into a level. Now, reduce the monster type numbers down from the maximum, and then introduce the new monster type.

Example: Gold dragon on level 2

1. Alter one of the (neutral) monster types to scorpion or beholder.

2. Check level integrity. Gold/yellow should now be the new colour scheme.

3. Delete both monster types, and replace with the dragon type only.

4. Check level integrity. The gold colour scheme should still be intact.

Invisible creatures:

There are a few ways to simulate invisible creatures, almost all using blips in programming so it can cause bugs in certain cases if not used carefully.
Ways to simulate are as follows:

1. Change monster positions radically (this only works with large creatures). Either set a monster generator to generate (through hex) 2 – 4 creatures, though only two seem to generate, or alter the 6th byte of an existing monster as to a position only occupied by a normal sized creature. Either way, DM won’t draw the graphics for this situation, so the monsters will be invisible, though otherwise act as normal.

A hex number of 20-something (23 recommended) could alter any creature, though apparently buggy

By using invisible Grey Lords you can set up invisible walls (that cause no damage though). Cloning this tile for multiple walls is a bad idea, but cloning the tile without him first (object teleporter, pressure pad) and then teleporting a single Grey Lord onto one of the tiles will not cause any bugs.

2. Change the hex of all the tiles you wish monsters to be invisible on to E0 in the third byte. There are no game crash bugs as long as the rules for it are observed, monsters must start from another place, never view a saved game with any object/monster still on one of these tiles (see section on ‘Floor Tiles’). Also, spells and objects will be invisible in this room unless the party is on that square

3. Teleport a monster into a wall.

4. Clone some tiles (see ‘Cloning’ section) and place a monster on one. This is very dangerous, as normally cloning creatures crashes the game. It’s important to not to use this unless sure of what is happening. You have to be teleporter onto a cloned tile that contains an ‘image’ of the monster.

Imperfect methods are to:

a) Place the party of a saved game onto the same tile as a creature using DMute. Until either moves, both occupy the same space and can attack each other.

b) Place wrong facing doors in a corridor. Creatures (and the door if closed!) appear invisible in this case, though champions standing in the door square will see the doorway post.

Cloning
There are two types of cloning – cloning items, and ‘cloning’ tiles. The first is very dangerous and will almost certainly cause a crash in the game at some point - creatures upon dying, items when both present outside of the inventory through dead characters, throwing items, etc. This can happen naturally in DM during an extended game (building up characters etc.) and also occasionally in DMute editing. To achieve it, take any object, and alter its unique identifiers (1st and 2nd byte) to that of the one to be cloned. The other hex will adjust to this new set-up.

‘Cloning’ tiles is different. Each group of objects present in a tile is stored separately in a linked list. So by referencing this list (writing the 7th and 8th bytes of one tile to another tile, adding 10 to the 3rd byte if changing from a blank tile) then this list will be present in more than one place. Each tile is still separate, so only the list is being altered if objects are taken away. In this way using cloned tiles for similar functioned tiles can conserve all teleporter, door, and wall object numbers. In the case of teleporters and doors, the appearance is unaffected on other tiles if one is altered, so they can be independently activated/deactivated. Wall objects are affected for all instances.

Side effects are that any creatures, spells and thrown objects will appear in all the tiles if entering one. These objects know which tile they entered, so will exit the same tile and continue as normal, all other instances ‘images’. Starting off with cloned tiles using these objects is dangerous, as it causes confusion to their origin within the game when they move, which can cause crashes.

Another odd property is the position of the first object only in a linked list can be altered without affecting the positioning of the other instances. So, in this way alcoves can be cloned without the objects inside appearing as long as they face different directions. Also inactive items can be cloned between levels as long as the graphical number is the same (a water fountain created from a set of manacles as long as both have graphical number 9x). Combining the above with the idea that any graphic can be used for wall pressure pads results in large savings for wall objects.

1. Find all the inactive objects used. Note the graphical number, and facing for alcoves. Group them into graphical numbers, creating two or more groups for each same facing, same numbered alcove needed. Also note if certain faces must remain blank for other objects.

2. Find all instances of buried wall objects (5 0, 85 8, etc), change the graphics number to one of the groups. If there is more than one wall object, then the lower ones will determine the graphic in that direction, so must be changed too. Do not use these for objects that require blank faces. Note the 7th and 8th byte of the tile.

3. Delete each inactive wall object. Hex edit the 7th and 8th byte for the tile to the value for the new wall objects being used. Alter the position of the first object as required. Any wall objects that point off-map will not cause any problems.

DM and DMute problems

Creating a DM dungeon can cause certain problems on running. These are all avoidable, so use this as a trouble shooting guide. DMute itself encounters the occasional problem when editing, so there is also a section at the end to analyse problems here too.

DM

The game freezes when walking down a stairway

This ‘stair lock-up’ bug is the biggest bug, seems to be some form of specialist crash, some experience it, some don’t, with the same dungeon.

 If there is nothing obvious causing it (see other problems first, moving onto a level with a bad cloning or severe graphical glitch could be the cause) then the way to solve it is as follows: Create a teleporter on the first (Hall of Champions) level, that points all the way down to the last (14th) level. Create another teleporter on the last level that then points back up to the original level. This should solve the problem for the dungeon, but might not help with the saved game as is.
The characters freeze mid movement, hanging the game, although monsters, etc are still moving normally. As an additional check, this will have happened after an object is dropped, a character is reincarnated in a VI altar or a giggler has stolen an item:

One of the characters has become underloaded – their weight has been reduced below 0, which wraps around to a very large overload. This causes each step to take many minutes depending on machines.

DMute does not alter the weight of a character if you change an object in his inventory. So either only edit objects outside of the characters’ packs, or make sure that weight before changes = weight after changes (erring on the side of overweight is acceptable of course). For the VI altar effect, this is a game bug coming from playing for too long in the game, so you must keep your champion carrying enough weight to combat this problem.

There is a blue or multicoloured graphic that overlays part or all of the screen when facing a certain direction. Around this area occasionally the game will freeze up, crashing.

If DM is told to display a graphic it cannot display, then this glitch will display instead. DM levels have a set number of graphics available per level for pressure pads, doors or monsters. If through DMute a graphic is called for that can’t be used, then this will result.

The most common fault is that DMute assigns a default graphic 3 for pressure pads. Some levels (for example 3, 13 and 14) don’t have a graphic 3. It’s especially easy to forget to check with floor pads hidden behind a wall. Calling for a door graphic (or door type) that doesn’t exist (ornate 2 or more in level1) creates a local glitch only, though once for me this has crashed a game. Changing the monster type of an individual creature through hexing to a new type not on that level will also generate distorted graphics, though the monsters will attack as normal.

Alcoves or VI altars appear as garbled wall text (very rarely proper text).

Alcoves are sometimes set by DMute with a very large wall object graphics number (found in the 6th byte). This then becomes the similar situation to the above, except that a crash will rarely happen (the alcove won’t work though).

Alter the first number of the 6th byte to a lower number, cycling through from 1x onwards until the real lower valued number for the alcove is found. This will be reset if the GUI is entered into again for the alcove, so always recheck it.

The game crashes with a system error when a pit is stepped on.

As DM levels are not stacked on top of each other it is possible to create a pit that doesn’t go anywhere. If a character dies when on this pit, then the game crashes.

The game crashes with a system 71 error when a level is entered by any means

DM doesn’t like cloned creatures so it is best to ensure that cloned creatures are kept to a minimum, or the creatures are removed from the tiles before this level is re-entered. Seen when using a large number of Grey Lord invisible walls.

The game crashes with a system 45 error

This seems to be generated by having cloned monster tiles, that monsters are teleported to - very rare.

It is always best to thoroughly playtest anything using cloned tile with monsters, and this error can occur a few minutes after the cloning of monsters has happened

Wall object/pad loses its abilities (champion mirror becomes blanked)

The wall objects have probably lost their hex codes, as the DMute GUI will assign known values to the object. It’s best to sort out effects, and activations first with the GUI, then hex edit afterwards. Always cancel if only checking a hexed object through the GUI.

The game hangs when a champion mirror is pressed/a selected champion has unusual stats and the game crashes after a few steps.

The text pads infront of the ‘mirror’ actually contain the character stat information, hidden.

Make sure a text pad is included infront of the character, preferably silent or else when the mirror is clicked on the game will crash. If a different text pad (not champions) is used, then the champion will appear to be resurrected, but the game will soon crash, as it hasn’t been given the correct stats. Character portraits and text pads can be swapped.

A champion mirror does not remove the champion stat when they are resurrected/reincarnated and the champion can be selected again and again.

Other wall objects on the same tile can interfere with the ‘blanking’ that happens on choosing a champion, so the mirror is left as being active. It’s best not to change mirrors until their function is better understood. Mirror appearance should be changed through hex editing of the 6th byte, as should any other additional effects.

Magenta worms appear as single worms from the side in groups of 2, and spells fly over their heads occasionally.

DMute assigns the wrong positional byte when worms are created using it, so that the graphical glitch and spell collision bug is encountered. This won’t happen to generated worms.

The positional byte is the 6th byte, it will have C in it, changing this to 2, 8 or D will rectify the problem.

The Firestaff+ won’t activate an object

DMute has the wrong value assigned for this – the correct code is 3rd byte 4, 4th byte E.

Random graphics like keyholes, torch holders, etc appear around a level

DM uses the first few graphics for walls and floors as random ‘feel’ graphics about a level, Changing a low valued wall graphic to a one off graphic like a holder or keyhole is therefore likely to cause problems with this

Either swap the places of the offending graphic with one that is not obvious (so change a keyhole graphic 2 to a hook graphic, and the hook graphic 7 to a keyhole). Or take each offending tile in turn, and make sure it’s tile hex is 0 in the 3rd byte, removing the random graphic (this won’t work on the outer dungeon edges, so they will have to be hidden).

DMute

A blue cross appears over a floor tile

This occurs when a floor tile becomes invalid, either it’s hex value or because it is trying to reference to an item that doesn’t exist.

If you hex edit a tile type (3rd byte), and forget to adjust it by 10 for items appearing on the tile or not, then this will not be recognised (has more serious effect too). Also, if you try to create a new object when the limit is reached then this will occur. This is a an annoying situation as deleting will destroy the whole tile, deleting all the items below.

All the objects in the dungeons have shuffled around, in some cases appearing in strange places (a monster or teleporter) in a wall, etc.

This is the reaction of DMute to bad tile hex. Sometimes it will occur throughout the entire dungeon, other times it will only occur below the level that has the bad tile.

Always make sure that when hex editing that the +10 to tile type for items/monsters present is adhered to (if DMute updates and creates a blue cross because of it, then check lower levels and resume a previous version). Never use/view an F0 – FF tile type, as this will occur too. Always keep multiple staggered copies of a dungeon in progress as this crash can leave dungeons fairly unrecognisable as all objects are usually moved.

When I press delete on a tile, the edit object option comes up instead.

For more than 20 objects (might only apply to items) on a tile, DMute has a bug that it will bring the menu up, but after deleting the last object as normal, so it is annoying but not stopping the editing process (and this tile can be edited with e as normal too)

Objects on a door or pit tile cannot be edited

Another DMute bug. The easiest way to overcome this is to use the tile hex 30 (blank floor + object) until all has been edited, then restore the hex after. Alternatively, use hex editing on each object to alter it, going as far as to recreating the object somewhere else then copying the bottom (up to 6) bytes in the one on the tile.

DMute displays a ? when viewing a saved game

DMute v1.3 doesn’t have hex codes for all the conditions of a tile. Most are only obtainable through hex editing, occasionally a wall toggle will also produce them.

All the conditions will work, so just use the tile hex to find out what this tile condition actually is.

A created invisible teleporter turned off in DMute is now a blue haze

DMute toggles invisible teleporters to closed blue hazes – use hex editing to change it to 3rd byte B0 if this is required.

Appendix I - Binary and hex

Binary is like decimal, except instead of counting from 0 – 9 the only valid values are 0 or 1 (which is all that computers can handle, and are called bits). So instead of each column representing the next multiple of 10 (10s, 100s, 1000s) they represent 2, 4, 8, 16, etc

11001 in binary = 16 + 8 + 0 + 0 + 1 = 25 in decimal

An 8 bit number is known a byte, and represents the numbers 0 – 255.

Hexadecimal counts from 0 –15, with the final 10 – 15 displayed as A, B, C, D, E and F. As a 4 bit binary number also has the values 0 –15, then this is a good shorthand to write computer code in. Therefore, a two digit hex number = 1 byte.

This relevance for hex editing can be seen in a few examples. Text codes leave the last bit of the 3rd byte free so that:

xxxx xxx0 = invisible

xxxx xxx1 = visible

So in the hex notation an even number is invisible, and an odd number isn’t.

Pressure pads and wall objects use the 3rd lowest bit of the 5th byte to show whether the object can activate more than once

xxxx x0xx = multiple activations as normal

xxxx x1xx = single activation only

So in hex, adding 4 to the fifth byte will set this effect.

The DMute GUI is usually used for assigning destination/target squares for teleporters and wall objects/pads, but it’s coding is based on representing the relative level co-ordinates (top left corner 0,0) as 5-bit binary numbers (as maximum level size is 32x32).

So (15,31) = (01111, 11111), and would then be coded into the object hex (different depending on the object).

Appendix II – DM level stats

Level
Size

Top co-ord.
Mon. types
Depth

1
18 x 15
0,0

0

0

2
32 x 32
0,14

2

16

3
32 x 32
5,10

3

16

4
32 x 32
0,0

6

36

5
30 x 31
5,0

3

32

6
31 x 32
5,5

3

33

7
30 x 31
5,5

1

48

8
32 x 32
20,11

4

48

9
31 x 32
12,5

3

48

10
31 x 32
10,10

4

64

11
30 x 32
10,10

4

80

12
32 x 31
20,20

3

80

13
22 x 20
25,30

5

99

14
26 x 13
25,32

1

96

Level depth affects rate of experience earned (more gained for lower levels), and toughness of generated monsters. 0 for depth gives the constant light effect of the Hall of Champions.

For maximum objects, counted numbers are:

Pressure pads/wall objects:
184

Teleporters (all types):
176

Doors:

110

Weapons:

102

Clothes/shields:

113

Misc. objects:

276

Scrolls:

32

Potions:

45

Chests:

12

All non-object related tile types (not doors and teleporters) are unlimited.

Appendix III – DMute tutorial

The idea of this is to create a tiny puzzle from a blank dungeon to highlight most of the features of Dmute and DM.

The tutorial has three parts in each step – the bold instructions, the normal text that explains why, and can be safely ignored until you are interested in the reasons, and the italics, which give troubleshooting guides (and should be read in order, as points won’t be repeated later). It’s assumed you have checked out the hex manual to the quickstart guide, and have read the dmute.txt of commands, though all steps will still be gone through slowly.

There are only 13 steps in the tutorial, so although it’s wordy, there is not much too the building when you know what is going on.

Screen captures have been altered for space, so displayed menus and objects might appear in different places.

Outline:

At the entrance will be a champion mirror to select a character to complete the puzzle. A torch holder on the wall of the following corridor will allow a torch to be picked up for light. The corridor will lead to stairs, which go down to a small room with a door and a keyhole beside it. The puzzle is a variant of the ‘cast your influence, cast your might’ The door is push button, infront of it is a pit. And behind it is a floating monster. Casting a ZO spell (1st rune, then 6th) will open the door. Killing the monster will drop a key, and using this key will close the pit. Passed the pit is another door, with a lever beside it. Opening the lever will lead to a final alcove with the Firestaff in it.

Building the dungeon:

Starting the dungeon:

Step 1: Obtain a blank dungeon. The best way is to back-up the original DM dungeon.dat file in the Data folder, and deleted all objects and tiles in the squares 0,1 to 4,15 on Level 1, 2,14 to 6, 22 on level 2 and 5,16 to 6,20 on level 3. There are also blanked dungeons available to download. Whatever method is used, save this file as dungeon.dat.

To blank these squares, move the mouse around, and you will see global co-ordinates. Pressing the left mouse button on a blank floor or wall tile will toggle these back and forth, so you can blank these tiles easily. Letting the mouse hover over a tile with an object in it, and pressing ‘d’ will delete each object in the list from last to first – the tile can then be toggled. Pits can be closed by left clicking on them, and false walls can be opened or closed. Other tiles like stairs can be moved out of the way. To do this, press ‘x’ when the mouse is over the tile to pick up, and press ‘v’ when the mouse is over the new tile to drop.

It is safe to move champion mirrors out of the way too, as long as you also then move the character name pad in front of it in the same way, and place it in the same relative position as it was beside the mirror. Though as this is only a test dungeon, you can just delete them if you wish!

[image: image1.png]Level 1

Fig 1: Blanking the top left corner and moving objects (shown – the original mirror position is still pointed to)

Most blank dungeons will have the original champion mirrors, as will the original dungeon, of course. The tutorial will assume you deleted them, and show how to create them from scratch. It’s best to try this rather than moving a champion mirror into your dungeon, so you can get familiar with them, and so know how to correct problems if something goes wrong.

Make sure that you save the dungeon.dat file in the Data folder. Do not convert a dmsave.dat file as a starting dungeon.dat file, as they are not the same, the second is larger and contains character and active dungeon information, and so won’t be recognised as a starting dungeon.

Step 2: Theron starts on square 1,3, facing south. Create a corridor starting from 1,2 to 1,4, snake it right from 1,4 to 3,4, then have it go down from 3,4 to 3,14. On level 2, open a floor tile at 3,14. Create a 2 x 3 room from 3,15 to 5,16. Finally create a corridor from 5,17 to 5,21. On level 3, create a 2 square room on 5,17 and 5,18.

[image: image2.png]Level2-

Level 3

Level 1

Fig 2: Basic dungeon layout

The reason for the long starting corridor is, as can be seen, levels don’t stack on top of each other – level 2 begins at 0,14. It is always important to check the global co-ordinates between levels, as pits and stairs must line up, or else parties can be dropped in the middle of walls, or unable to get back up to previous levels.

Mirrors and torches:

Step 3: With the mouse over 1,5, press ‘a’, and add a wall object. Right click on this to edit, or with the mouse over it press ‘e’, highlight the first object, then press ‘edit’, or simply press ‘1’ when the mouse is over it.. On the left hand side, find the ‘mirror’ graphic, and select it. On the right hand side, uncheck the ‘active?’ box. Press ok. Hex edit the wall object by, while the mouse is over it, either a) pressing ‘h’ then ‘1’, or b) press ‘e’, highlight item 1, then press the ‘edit hex’. Using the tables in the ‘Pressure pads and wall objects: Champion mirrors’ section of the hex manual, select a character portrait. Add the number 7f or ff to the bottom left (3rd byte), and the number indicated into the next byte along (the example given in the picture is 7f 2 – which is Zed)

Using the add menu (press ‘a’ when the mouse is on the tile) add a weapon to this square, and edit it (pressing ‘e’, or pressing just ‘2’ while the mouse is on the tile) and change it to a dagger.

[image: image3.png]Crest
Clcthes
Visc. Obiect
Potion
Sciol

e te 0%
Wespon

 [image: image4.png]]
ke

Dageer

Global Offset (x,y,2): 1,5,0

[image: image5.png][Wall Obiect

Object Type Operated By.
Nare Mouse

Blue Button (0u)

Burnt Amalgam Blue Gem

Empty Amelgam Bouider

Eye Swich Bon

Good (utsde] Choker

Green Bution (0u) Copper Coin

Corbamite
Fied Bution (Qul) Crass Key
Torch Holder Empty) Emerald Koy

EdtGraphiy, || | I Active? Edit Action

concel | 0K

Fig 3: Main – editing the mirror square items. Outside – add object menu, hex editing the mirror, editing the mirror.

When an item is added, its default graphic is usually a drain on the first level. Looking at the hex before editing, and referring to the quick start, it can be seen that the object created has no activation/quantifier (3rd/4th byte) until edited, that the effect that could be generated is an open effect (C0 in the 5th byte means open), that this effect won’t be generated (x8 in the 6th byte means inactive wall object) that the graphic being used is the 10th (Ax for mirror) and that if the mirror was active, it would target the top corner (7th/8th bytes at 0,0 refer to the top corner).

Champion ‘mirrors’ don’t have to be mirrors at all, you could use a wall hook or slime instead, as long as you remembered to press the graphic not to portrait.

Note the portrait is only the graphic used for the character, so using Zed’s portrait doesn’t force you to give Zed’s stats and name to the character.

Adding any object to the same tile, facing the same way, will mean that this item is stored in the champion inventory, in the most logical position (the dagger is placed in the hand).

You cannot test the mirror yet, as the game will crash if you press it without following step 4 first. If the portrait does not appear on the square, then check the hex of the mirror, and make sure that you didn’t erase the 3rd and 4th bytes, by cancelling the window, or looking at the object through the DMute GUI afterwards (this will reset the hex).

Step 4: Turn the tile infront of the mirror temporarily into a wall tile. Add a wall text to the square. Press ‘z’ with the mouse over the tile to hex edit the tile hex itself. Change the 3rd byte from 10 to 30. Press ok.

Decide on a character for the dungeon (owing to the puzzle, a wizard like Boris or Gando would be preferable). Go to the table in the Text section of the hex manual, and note the 2-byte code for this character’s name. (Wuuf would be 61 9). Hex edit the text object (using ‘e’ or ‘h’ then ‘1’), and enter this code into the 3rd and 4th byte. Reduce the 3rd byte by 1 to 60. Press ok.

[image: image6.png]WU THE BIEA

ffﬁﬁ
== [

Glshal OfFet (72): 140

Level 1

[image: image7.png]

Fig 4: Main – character pad fully edited, with hex editing. Other – tile hex, corrected.

The text pad infront of the mirror, for character names, also contains all the champion information. This is needed if the mirror is selected, or else the game will crash. Floor pads cannot be created directly using DMute 1.3, so you have to create a wall text, the change the tile to a floor tile (note that 10 and 30 were used by the tiles – as there is an object on them. Otherwise these tiles are 0 and 20 respectively).

As shown, floor and wall texts are identical. The extra information of the character pad will be displayed as garbage text if the pad is stepped on, so reducing the 3rd byte by 1 will make the pad ‘silent’. The champion mirror is now set up. These two components – a wall object with changed 3rd/4th byte, and a text pad infront of it with a character name – are all that are needed. As long as they are kept together, then no problems should occur.

Step 5: Create a torch holder (as given in the quickstart guide). Add two wall objects, and one weapon to tile 4,4. Adjust the position of all three by using either a) ‘p’ then the number, or b) pressing ‘e’, highlighting the item, then pressing ‘edit position’. Make all three face west.

For the first object, edit it so that it has an empty torch graphic, and isn’t active (uncheck the box). Press ok.

For the second object, edit it so that it has a full torch holder graphic, and isn’t active. Then hex edit the 3rd and 4th bytes to D and 2 respectively, and the 7th byte to 10.

For the weapon, edit it to become a torch.

[image: image8.png]Torch Holder (Empty)

‘0
‘Torch Holder (Full)

#

Torch

Glshal OfFet (72 4,40

Level: 1- I

[image: image9.png]Object Posiion
o ® o

(i

Fig 5: Main - editing the torch square. Outside – the position menu

The first wall object is being used as an alternate graphic for the second to swap places with (the lowest object is the displayed object). For the second object, the D activation type means that the given item in the 4th byte (2 means torch) will be placed into the wall if the wall is clear, and removed from the wall if it is in the wall and activated with an empty hand. The 10 in the 7th byte of inactive wall objects means that the item will toggle with the other in the list when activated (actually, D objects do this anyway, but DM torch holders use this redundant code anyway!)

Finishing the first level – adding other tile types:

Step 6: Move the mouse over the square 1, 2. Press ‘t’, and from the tile menu select ‘door N/S’. Edit the object part of the door as normal, and select ‘iron’, ‘ornate 1’, and ‘activated by other’ from the door GUI.

Now add a stairs down, N/S on the square 3,14 using the same ‘add tile’ menu.

[image: image10.png]Level 1

Glshal OfFet (572 1,20

 [image: image11.png]Door E/)

Fase wal
Fioor
maginary Wall

Fi (invisile)

Fit (Nomal)

Staits Down (/4]
Staits Dowin /5]
Stais Up (/)

Fig 6: Main – editing the door of completed level. Outside – add tile menu

The first level only has three door types – the plain wood, plain iron, and the ornate black door of the main entrance. Wood or iron ornate 1 appears as this, all other slots for this level aren’t available. As you can see, doors create an object on the tile aswell, and it is this that has to be edited. Teleporters do this too, while all other tile types are simpler and only rely on the tile hex for function. This is now the first level done.

Building the puzzle level:

Step 7: Go down to level 2 now. Add a N/S stair going up on square 3,14. Add a pit tile to 5,17. Add a door to tile 5,18 and 5,20.

Edit the two doors, let the first be a plain wooden door, activated by switch. Let the second be a plain wooden door, activated by other.

[image: image12.png]Plain Wooden Door (With Buttor)

Glohal Offet (57,2): 5, 18,1

Level: 2-

Fig 7: Floor tiles for level 2

This is the setting up for second level and main puzzle. It will be similar to cast you influence, where a pit infront of a door blocks the party, so that a ZO spell is needed (hence the push–button door) and then a second component will close the pit. Note that the stairs up and down have to be lined up together (both are on the respective 3,14 squares. However, they don’t have to face the same direction – the stairs could have been E/W if allowed to open out that way. Also, see that the pit has been placed at 5,17 – to make sure it opens down onto the 3rd level, which starts at 5,10.

Make sure the stairs up are N/S or else the character will be trapped on that square.

Step 8: Add a wall object to square 4,17. Edit it to be active (box ticked), select plain keyhole in the left hand graphic side, and select ‘iron key’ to activate it on the right hand side. Now press ‘edit action’. Here, select ‘close/deactivate’. Now press ‘edit target’. On the level map, select the pit square. Double clicking or clicking the close cross after will return to the previous menu. Select ‘ok’, then ‘ok’ to complete the keyhole.

[image: image13.png]Glohal Offet (57,2): 417,1

OpenvActivate

& Clase/De:

[image: image14.png]

 [image: image15.png][Wall Obiect

Object Type

Operated By.

Nare
Big Suich (0u)
(Green Button (i)
Green Buiton (0t
Lever (Down)
Lover (Up)

Dinate tlcove

Torch Holder Emply)
Torch Holder (Ful]

Edit Graphic

o =
Choker El
rrcon

e

et

it

B

i

i

W hetive? EditAction

=

Fig 8: Main – editing the keyhole action. Outside – editing the target, editing the keyhole itself

Creating a toggling lever on the square 6,19 (same as the lever in the quickstart guide). Add two wall objects to the square, and edit their positions to face west. Edit the first, selecting the lever down graphic, but unchecking the active? Box. Press ‘ok’. Hex edit the object and put 10 in the 7th byte, and a 1 in the 3rd (means activate by mouse).

Edit the second object, selecting the lever up graphic, activated by mouse, and leave the object active. Using the ‘edit action’ button select ‘toggle 2’, and using the ‘edit target’ button select the second door for the effect. Select ‘ok’ and ‘ok’ to complete the object.

[image: image16.png]Lever (Dovm)

N

Lever (Up)

Global Offet (57,2):6,19,1

Level: 2-

Fig 9: Adding a lever

Active object are easy to create, though as hex editing co-ordinates is hard, it is best to do as much with the GUI first, including selecting the target, then hex editing afterwards. Most complex hex changes will be lost if you return to the GUI after hex editing.

For the iron keyhole, looking at the hex, you can see the code 4 in the 3rd byte is used, indicating ‘activate by item’. If this is edited to 3 instead, then the keyhole would still be activated by the iron key, but the key would not be lost afterwards. If this was edited to d, then the keyhole would behave like the torch holder. Swallowing the key, and allowing it to be removed again when activated by an empty hand.

The lever is working in two parts, both activated when the mouse is pressed on it. The first object, when activated, will toggle graphics order with the second so that a lever up is replaced as a lever down, then back again. The second is activating the door, and so each time it is pressed it will toggle the door open and closed (toggle 1 only allows one activation, toggle 2 is the constant toggle option).

Looking at the first lever object with the GUI will remove the hex, so it won’t toggle or activate. If you select’ activate by mouse’ for the first object, then uncheck the active? box, then the hex will default back to 0, which is why it should be included afterwards..

Creating new creatures, and ‘chesting’ objects into them:

Step 9: Add a monster to the tile 5,19. Edit it as normal, and create one flying creature (flying dragon recommended), with 1hp. Press ‘ok’. Go up to the pull down menus, selecting ‘misc’ and ‘check level integrity’. DMute should return a ‘file ok’. If it returns an error, see the troubleshooter below.

[image: image17.png]E4

Fiying Drsgen (1)

Glsbal Offat (572):5,19,1

Level: 2——|

[image: image18.png]¥ DMute - V1.3

Misc. Help

ling D
Kight

Fig 10: First – editing the creature Second – Checking level integrity (with the two outcomes)

Placing a key in the creature (also in the section ‘chesting’ in the hex manual). Add an iron key to any blank floor tile, and hex edit the tile. Note the numbers in the 7th and 8th byte. Now, replace the 3rd byte with 20, and the 7th and 8th bytes with fe and ff respectively. The iron key is no longer on the tile (the graphic will update on the next screen refresh). Hex edit the creature, and put the noted two bytes in the 3rd and 4th byte of the creature. Press ‘ok’. The creature will now indicate it has the iron key

[image: image19.png]e
Fyine Do () (RN

Fig 11: Floor hex of iron key square before blanking compared to hex edited creature

While any creature type is allowed on any level (almost), there is a limit to the amount of creature types that can be present at any one time. For level 2 it is 2. The .dat file will remember the screamer and mummy types for here, so by checking the level integrity after adding a new monster type it updates the list. Otherwise, any additional creature types are simply killed off.

The couatl/flying dragon is the best creature to use, although vicious, it is easy to kill if it has 1hp (throw the dagger, and it will die).

What is happening with the tile ‘blanking’. Objects are remembered in a linked list if present in the same place. Each linked list’s first object is then referenced by the tile it is on. Chests and creatures, too, reference a linked list for objects inside them. So, creating a linked list on one tile, then ‘blanking’ this tile (rather than deleting the objects) means the objects still exist. So, this list can then be referenced in the appropriate bytes of the creature instead. If a linked list is referenced in more than one place, then this is called ‘cloning’, and can have sometimes beneficial, sometimes bad, properties.

If the couatl (or other flyer) is not present during the game, and the key is left lying beyond the pit, or if the level integrity check produces the given error, then too many monster types are present on the level. To correct this, delete all instances (monsters and monster generators) of one creature type, so at most one type is present on the level. Then add the new monster type, and go to the pull down menus, ‘misc’ and ‘check level integrity’. DMute should now come up ‘file ok’ and the creature should now be present.

If a blue cross appears in the area where you ‘blanked’ the iron key tile, then either you have not edited the tile back to 20 from 30, or have not removed the 7th and 8th bytes and replace them with fe ff.

Finishing conditions – the Firestaff and surprises

Step 10: Add two wall objects to square 5,22. Edit them to square alcoves. For the first object, make it active, and edit the target the square it is on. Now, hex edit the 3rd byte to 2, the 4th to e, and the 5th to 60. For the second, make it inactive. Hex edit the 3rd byte to 8, the 4th to 0, and the 8th to 1.

Add a weapon to the tile, and edit it to the Firestaff+.

The dungeon is now almost finished – run DM, press enter, and play using the outline.

[image: image20.png]Squas Aleove

Squas Aleove

The FiestafTe
Glshal Offet (57,2): 5,22,1

Change Tile

F

L ter2

"7

Fig 12: Alcoves and Firestaff, with hex of inactive alcove

For the first object, this is using a variant of the ‘activate by item’. Alcoves are a special case, and require 2 rather than 4 to be activated by anything. The e code means Firestaff+ (DMute has this wrong in its listing). The code ‘60’ in the 5th (effect) byte means that an open effect will only be generated when the item is removed. So, remove the Firestaff, and something will happen. Play it though before reading on.

As seen, the second object is a fireball shooter! Any inactive object can be turned into an object shooter, firing each time an open effect is generated to the face it is on (so west, south and east shooters require and extra piece of hex in the trigger). The 8/88 code means shooter, and the 0 in byte 4 indicates fireball. Other codes can create poison blobs, lightning etc, and using a/8a creates double firing instead. The power of the object, from 1 – f, is indicated by the 8th byte.

What if the alcove appears as garbled wall text? If this happens, hex edit the 6th byte, first number. It will possibly be very high (DMute occasionally misnumbers alcoves). To rectify, staring with 1x, keep changing this byte number until the proper alcove graphic is displayed. This will happen each time the GUI is used to edit this alcove type.

Changing graphics:

Further part – changing the alcove. You can upgrade this alcove to an ornate alcove, or infact alter the available graphics on the level, by using the ‘edit graphic’ button on the left of the wall object editing GUI. This will alter all graphics of that type on the level. It is best not to use this on low value graphics numbers, as they are also used for random wall graphics too (so if you change a wall hook to a keyhole, you could have inactive keyholes around the level). Highlight the new graphic wanted when in the ‘edit graphics’ menu, in this case ornate alcove, and click on ‘ok’. All square alcoves would become ornate alcoves.

[image: image21.png]GieenB [God/TuauaseKey Hole 2]
Green B | Good (Dutside]

Lever [T | Green Button (In)

Lever (L | Green Button (Out)

Lever (Down)

Lever (p) ||
Manacis

Master Koy Hole

ior

[image: image22.png]The FiestafTe

Glshal Offet (57,2): 5,22,1

Level 2-

Fig 13: Main – alcoves and Firestaff+. Outside – Using edit graphic on alcove for ornate alcove

Finishing the dungeon – teleporters:

Step 11: Go to level 3. Create a teleporter using the tile menu on 5,18, Edit the object part as normal. Select ‘everything’ for teleport, uncheck the ‘buzz?’ box. Go to ‘edit destination’, us the ‘page up’ key to go on to level 2, and highlight the square above the pit. Either double click, or press the cross after to get back to the previous menu, and press ‘ok’

[image: image23.png]fS—

Glsbal Offet (57,2): 5,18,2

Fig 14: Creating a teleporter.

This allows the character falling down the pit to get back out, assuming they can take the ~40 health damage. If you hex edit the object part of the teleporter, go to the 4th byte, and add 10 to the hex, then this creates an absolute effect for teleporting turning, so that no matter what way the teleporter is entered, then the destination facing will be north. So, by further changing the spin to 180 degrees, then an ‘always facing the pit when teleporting’ effect can be created .

The dungeon is now finished!

Afterword:

This should hopefully show how to create a lot of the traps and tricks in a DM dungeon, mostly using hex editing – reading the relevant sections in the DMute hex manual will indicate how to attempt anything, and looking at the original DM and CSB dungeons can give ideas too.

Three rules are

1) Always use the GUI before hex editing

2) Check wall object graphics you change incase of the ‘garbled text’ problem

3) Always check the correct tile hex if you hex edit a tile (eg 20 for a blank for, 30 for a floor with object)

